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The structure of cluster expansion which is widely used in statistical mechanics is studied from an
algebraic point of view. In doing this, a commutative algebra is constructed which is generated by
partitions of a finite set by regarding them as operators which divide the set into disjoint parts.
Physically, these operators correspond to operations which remove interaction among certain clusters
of particles. It is shown that the cluster expansion sterms from the relation between two basis sets
of this algebra; the first set is the set of all partitions and the second is the set of pairwise orthogonal
minimal idempotents. This property enables one to demonstrate the equivalence of the product
versus cluster properties of the distribution and correlation functions, respectively, in general terms.
This is done by constructing a simple representation space for the partition algebra corresponding to
the distribution functions. A second application of the partition algebra is considered in the case
when correlations are well-ordered with respect to the interaction strength A, so that to a given order
in A the distribution functions are not all independent and can be expressed in terms of a finite irre-
ducible set of functions involving smaller numbers of particles. The combinatorial problem of caleu-
lating the expansion coefficients is carried out explicitly using a graded representation space with
respect to the order in M. It is concluded that the partition algebra can be used as a mathematical
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tool in handling problems involving cluster expansion.

I. INTRODUCTION

NE of the main problems in statistical me-

chanics is to express macroscopic physical
quantities pertaining to interacting systems of large
degrees of freedom in terms of the interaction po-
tential. In equilibrium, all thermodynamic quantities
can be expressed in terms of the partition function.
The calculation of the partition function leads us
to the evaluation of an integral over the state
“variables of a large number of particles. A method
which involves the cluster development initiated by
Ursell' and elaborated further by Mayer® and his
collaborators provided a means of evaluating of this
integral for imperfect gases. The method was later
extended for application to quantum systems® and
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to systems with nonbinary potentials.* Recently,
analogous methods were employed in treating non-
equilibrium problems.®

The combinatorial problems involved in the cal-
culation of the partition function, and also in redue-
tion of the distribution functions in powers of a
suitable parameter, can be handled by making use
of the powerful techniques of the linear graph theory.*
In the application of the graph theory to statistical
mechanics, the connected graphs defined on a set
of points play a special role. For example, the Ursell
cluster functions U,(r,, --- , r;) are defined as a
sum over all connected graphs on the set of I points.®
The relation between the probability distribution
Wy(r, -++ , ry) which are defined as a sum over

4H. L. Friedman, Ionic Solution Theory (Interscience
Pubhshers, New York, 1962).
G. D. Cohen, Physica 28, 1025, 1045, 1060 (1962).
6 G E. Uhlenbeck and G. W. Ford in Studies in Statistical
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all graphs on the set of N points and the cluster
funetions U, is given by

W@ = U,(),
W) = U.G) + U.60ULG),
Wslijk) = Us(ijk) + [U.G)Us(k) + cyelic terms]
+ UOU@OUK), )

and so on. In general, Wy is equal to the sum of all
possible products of cluster functions U,; such that
in every term the N particles are divided into dis-
joint groups (partitions). The inverse relation is also
well known and is given by

U,() = W.(0),
Us(z)) = Wy(5j) — W.(OW.(9),
Us(zjk) = Wi(eik) — [W:G)W.(k) + cyelic terms]
+ 2W.OW.(OW.k), (@)

and so on. In general, the cluster function U, is
equal to the sum of all possible products of prob-
ability functions Wy as above except that each term
is multiplied by a factor of (—1)*"'(k — 1)! where
% is the number of groups in that term. The rela-
tions (1) and (2) are referred to as Ursell develop-
ment. In problems where this development is suit-
able, it does not seem necessary to go into the
graph-theoretical details of the interaction picture,
gince Wy and U, both involve certain collections
of graphs. In such problems the relations (1) and
(2) may be considered as a one-to-one correspond-
ence between two sets of funections Wy and U,
which are symmetric functions of their arguments.
There is a further decomposition for U-functions
used in statistical mechanics which is due to Husimi
and is referred to as star expansion. This is not
considered in the context of the present investigation.

The purpose of this paper is to study the structure
of the cluster expansion using algebraic methods
and demonstrate that the combinational problems
involved in the application of this expansion can
be handled conveniently through the use of the
partition algebra which will be introduced in detail
in the sequel. The generators of this algebra are
partitions which are regarded as operators on finite
sets which divide these sets into disjoint parts.
Physically, partitions may be interpreted as op-
erators which cut off interactions among separate
groups of particles. Thus, the probability of finding
a system in a certain state becomes a product
when operated by such an operator. Repeated ap-
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plication of these operators induces more factoriza-
tion. In this manner the composition rule of the
partition operators will be defined. The mathe-
matical structure of the partition algebra is a well-
known type which has been studied extensively.
Therefore, the use of it as a mathematical tool
presents no algebraic novelty. Indeed, many of the
properties demonstrated herein can be recognized
by those acquainted with the semisimple structures.”
Nevertheless, a self-contained description of this
algebra will be given in Sec. II. The application
of the algebra to a specific physical problem is made
through the construction of an appropriate rep-
resentation space upon which the elements of the
algebra are defined as linear operators. In See. III
we construct a simple representation space of the
partition algebra which is particularly suited to the
study of the implications of the defining relations
(1) and (2) between the distribution and the cluster
functions. It will be shown that the proof of equiv-
alence of the product and cluster properties® of the
distribution and correlation functions, respectively,
is immediate once the partition algebra and the ap-
propriate representation space are constructed. This
will be given in Sec. IV. In the proof of equivalence
no assumption will be made on the W- and U-fune-
tions other than the fact that they are related
through the cluster series.

In Secs. V-VIII, we give another application of
the method developed here to a combinatorial prob-
lem associated with the cluster development when
the correlation functions are well ordered with re-
spect to a parameter \.

II. THE PARTITION ALGEBRA C(M)

Let M be a finite set of [M] identical elements,
and denote the subsets of this set by 9,,7=1,2, -+ - .

A set of disjoint, nonempty, subsets, 9, - -+ , MM,
is said to be a partition of M if the union of these
subsets is M. Alternatively, partitions P of M ean
be regarded as operators on 3 which divide M into
disjoint subsets whose union is /. In what follows
partitions of M will only be used in the latter sense.
The subsets 91;,, ¢ = 1, -+ , k) will be referred
to as the parts of P.

With every pair of partitions P and P’ (of M),
we associate another partition, the product PP’
which is formed by the nonerpty intersections of
the parts of P and P’. It follows from this definition
that the multiplication of two partitions is commuta-~

" N. Bourbaki, Eléments de Mathématique. Livre II:

Algébre (Hermann & Cie., Paris, 1958). (See in particular
Chap. 8).
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tive, i.e.,, PP’ = P’'P, and also operators P are
idempotents, i.e., P* = PP = P,

We also consider the collection of all formal linear
combinations of operators P with coefficients taken
from a field R (say, e.g., the field of rational numbers).
In this way a commutative algebra C(M) is defined.
The collection of all partitions of M contitutes a
basis set for C(M).

Two special partitions are of interest: (i) Identity
partition E. This partition introduces no division
on the set M. Therefore, one has PE = P, for all
P of M. (ii) Null partition P,. This partition divides
M such that there is only one element in each of
its |M| parts. One clearly has PP, = P,, for all
P of M.

It is convenient to introduce a nonnegative integer
d(P) corresponding to each partition P, defined by

aP) = |M| — k(P), ®3)

where k(P) is the number of parts of P. We call
d(P) the defect of partition P. In particular, d(E) =
|M| — 1, and d(P,) = 0.

It follows from the composition rule given above
that the number of parts of PP’ cannot be less than
either £(P) or k(P’). Alternatively, this can be ex-
pressed as

d(PP’) < min {d(P), d(P")}. @

When the equality sign holds, either PP’ = P or
PP’ = P’;if also d(P) = d(P’) then one must have
P = P’ If PP’ = P/, then the parts of P’ must
be contained in some of the parts of P, In this case
we say that “P contains P’ (or ‘“P’ is contained
in P”) and write P 2 P’ (or P’ C P). If PP’ = P/,
then we write P D P’.

Minimal Idempotents of C(M)

Corresponding to every partition P of M, we
shall construet an element e, in C' (M) which satisfies
the following conditions:

(i) €plp = €p,
(ii) Plep =¢p if P’ D P,
=0 if PPDP. )

It is noted that the above conditions define uniquely
the elements e» which are pairwise orthogonal and
which form a basis for C(M). To see the pairwise
orthogonality, we note that the product eper. =
PP’epep. [ef. (ii)] is nonvanishing if and only if
PDO P and P C P,ie, P = P'. The set of all
epr forms a basis for C(M) since they are linearly
independent. To prove uniqueness, suppose that
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there exist two sets of elements say er and &»
which satisfy (5). Because of completeness, & =

pr Qp,p€ps, hence €xep. = ap, prep.. Also, if P P/,
then ér¢,» = 0, which implies ap,». = 0. Thus
ép = ap,pep. Using (i) we get ap,p = a3 p. Since
gp # 0, ap,» = 1, i.e., these sets are identical.

Consider the element A (0)=FE— P, of the algebra
C(M). We see that PyA(0) =0, and A (0)4(0)=A4(0).
Similarly, we define a set of elements by the following
recurrence formula:

A@ = A@d - )E - 3 P),

d(P)=d

@=1,.-,[M -1, (©

where the summation is over all partitions with
defect d. These elements are idempotents, and, more-
over, A(d) annihilates all partitions with defects < d.
These properties can be proved by induction, ob-
serving that the element
PE- Y P)=-—

d(P’)=d(P)

>

d(P’)=d(P)
PP

(PP’)

contains only partitions with defects < d(P). One
getls

A=1IE- 3 P

=0 d(P’)=t%

™

The minimal idempotents ¢r can be written in
terms of the annihilators 4(d) as
epo = P 03
er = PA(@P) - 1), ®)

since the defining conditions (5) are satisfied.
It follows from (6) by successive substitution that

Ad) =E — 3 ep. ™)
d(pP)<d
Since annihilator of E, ie., A(|M| — 1), must be
zero, one obtains

E =

PEC (M)

eP} (10)
which is an expression of completeness of the set
of minimal idempotents.

Subalgebras of C(M)

Let 9 be a subset, and P be a partition of the
set M. The set of all non-empty intersections of 91
and the parts of P defines a partition on 9. We
denote this partition by P(91), and this correspond-
ence by T(9). C(M) is mapped by T'(9%) homo-
morphically onto C'(91) : that is () : C (M) — C'(9N).

On the other hand, under the same transforma-
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tion T'(91), the subalgebra of C(M) which is generated
by the partitions having the subset M — 91 as one
of their parts, is mapped isomorphically onto C(91).
We denote this subalgebra also by C(9n), and its
elements by the same symbols used for their cor-
responding elements in C(917).

Therefore, any partition P = (91,, ---+ , M)of
M can be written as the product of the unit elements
E(m,) € c(omy), G = 1, --- , k). We shall now
show that similar relationships also hold for e5’s, i.e.,

e = 1 eom), a1

g=1
where we set, for simplicity, e(9) = ez, (M), i.e.
the minimal idempotent in C(91) corresponding to
E(9m). To prove this we observe that

P[] em,) = I_IlE(m;)e(mi) = I_I1 e(Im,),

i=1

and

k k
P’ J1 et = I P'(omoe(ons).
i=1 i=]
In the latter equation, if P/ D P, then P/(91;) =
E(91,), hence the right-hand side reduces to the
product of e(91;)’s. But if P’ D P, then at least
for one value of i one has P’(9n,) = E(91,), hence
the right-hand side vanishes. This completes the
proof since e(MN;)’s are idempotents [cf. conditions
).
Another useful formula is
E= Y eMEM — m),

iemeM

(12)

where the summation runs over all subsets of M
which contain a fixed element ¢ of M. This element
merely plays the role of a counting device and the
resulting sum does not depend on it.

To prove this formula, we consider Eq. (10). We
can write P = EQUP(M — M), where M is the
part of P which contains the fixed element 7. We
first sum over all P(M — 9n) & C(M — 9In), and
then over all subsets 91 of M which contain 7. In
this way every partition P € C(M) is counted once
and only once. Hence

E= ) em

i€meMm

which, by virtue of (10), is identical to (12).

€p(M-m),
P(M—M)EC(M~M)

Transformation Rules between the Basis Sets
{P} and {e,}

In order to express P’s in terms of ep’s, it suffices
to multiply (10) by P, to get
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(13)

P = €pr,y
P'CcP
where the summation is over all P’ contained in P.
The inversion formula is somewhat more involved.
We shall only give the relation expressing ¢(3f) in
terms of P’s. To calculate ¢p, (11) can be used.
We shall now give the proof of the formula
eM) = 2 (=D*77(P)— DIP.

PeEC(M)

(14)

This formula clearly holds when |M| = 1. Let us
assume, as induction hypothesis, that it also holds
for all proper subsets of M. Then, by making use
of (10), we can write
eM)=E — Y, e(MEM — m)

i€ M

[~

=E+ > EM —om)
X o2 PEO(=D'TTREPED) — DI
P(m)yecm)

Now, E(M — )P (IN) is a partition of C(J), hence
the two summations in the latter term can be com-
bined into one summation over the partitions
P & C(M) which have at least two parts. One has
E(P) = k(P(@n)) + 1. Moreover, each partition
P & C(M) with k(P) > 2 is obtained exactly
kE(P) — 1 times as every one of the k(P(9N)) parts
of P(9M) becomes the set M — M. Therefore,

WD =E+ 3 (—~D*"TGEP) - DIP,

k(P)=2
which completes the proof.
Ideals and Residue Classes in C(M)

Let us consider C'(37) for a moment as a vector
space. Then the subspace & is said to be an ideal
of C(M) if X € & implies that XY € & for all
Y © C(M). Let & be an ideal of C(M). Then the
congruence relation Y = Z (mod &) indicates that
there is an element X € & such that ¥ = Z + X.
Then we say that Y is congruent to Z modulo &.
The subspace generated by such elements Z is
called the residue class modulo &. The reason for
introducing these classes is that in this way the
equations under consideration are transformed into
congruences modulo a suitable ideal so that a con-
siderable simplification is obtained in carrying out
the manipulations. We shall now consider some use-
ful examples.

Given & subset 90 & M, let P be a partition of
M having the property that P(9n) = E(IN), ie.,
P divides 91 at least into two parts. It is clear that,
for any P’ & C(M), the product PP’ has the same
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property. Therefore, the linear combinations (over
the field ®) of all such partitions form an ideal
§(9m) of C(M). It follows from the relation e, = Pep
that if P is in this ideal, then so is ep. Hence, the
set of all ep’s corresponding to the partitions in
&(9m) form a basis for this ideal.

Now we consider all partitions of M which do
not divide the subset 9%, i.e., P(91) = E(9M). Then,
the linear combinations of such partitions form the
residue class modulo §(9n), viz. C(M) [mod J(oM)].
It is readily seen that the set of all e»’s corresponding
to such partitions form a basis set for this class.
With respect to ideal &(9%), Eq. (12) can be written
as the following congruence:

EM) = m;ﬂ e(MNEM — o)

(mod J(om)].
IIl. THE REPRESENTATION SPACE L(M)

(15)

In order to make use of the algebra C(M) in
physical problems of interest it is necessary to con-
struct vector spaces, appropriate to the problem
at hand, in which the elements of C(M) are defined
as linear operators. We shall now construct such a
vector space axiomatically, and later use it, as an
application, to study some properties of the so-called
cluster expansion of statistical mechanics.

We associate a symbol Qy with every subset
I € M, and consider the formal products of these
symbols. We write Qpx, to denote the product
Q. *** Qu,, where P() = (M, --- 9M,). The
linear combinations of all such @7, over the field
®R generate a vector space which will be denoted
by L(m).

We adopt the following axioms: (i) PQy =
P(M)Qm = Qremy, for all PE C(M); (ii) P(ad) =
(aP)A = a(PA), P(A4 4+ A') = PA + PA/,
(P + PHYA = PA + P'A, for all 4, A’ € L(m),
a & ®; (iii) P(4B) = (PA)(PB) forall A € L(9),
B € L(9'), where 9% and 91’ are any two subsets
of M with empty intersection.

It is easy to see that if X and Y are two elements
of C(M), one has the property

X(Y4) = (XY)A. (16)

Therefore, the vector spaces L(91) are representation
spaces for the algebra C(M).

Now we consider the element Kg; of L{IM) defined
as Ky = e(M)Qy. By making use of the relations
(10), (12), (14), and (16) we can readily write rela-
tions between the elements @r and K=K, - - Koy,
We have respectively,
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QM = KP; (17)
PEC(M)

Qu = E KmQu-fm, (Q¢ = 1): (18)
iemeyM

Ky= 2 (=D*"7KP) - 1D!IQ, (19
PEC(M)

where in proving these relations we use (16), e.g.,

Ky = E( )ePQP = (Peg(:u) ep)Qy

PEC (M) PEC(M

= E(M)Qu = Qu. (20)

The representation space L(M) developed in this
section is still abstract in nature. In order to apply
it to the physical problems of interest we should
demonstrate an operator isomorphy between L (M)
and the space of functions of the physical problem
in which the elements of C(M) are defined as linear
operators. In the next section, we shall consider
a special problem, namely the cluster expansion of
statistical mechanics, and demonstrate how some of
the properties can be deduced in a straightforward
manner by making use of the operator formalism
developed here.

IV. APPLICATION TO THE CLUSTER EXPANSION
OF STATISTICAL MECHANICS

Let us consider the |M|-particle reduced dis-
tribution function F,, where each element of the
set M denotes the collection of state variables of
a particle of the system under consideration. Suppose
there is a grouping in the particles of the system
so that particles belonging to different groups do
not interact with each other. Then the probabilities
of such particles being in certain states are mutually
exclusive, which implies that F,, in this case, be-
comes a produet of distribution functions correspond-
ing to noninteracting groups.

In most cases, the interaction potential is a
strongly vanishing function as the distance between
the interacting particles increases. Then, the dis-
tribution function corresponding to a set of particles
which is formed by groups of particles situated far
apart in the configuration space has the tendency
to become factorized into the product of the dis-
tribution functions corresponding these subgroups.
This is the so-called “product property.”’

It is for this reason that in constructing the vector
space of the distribution functions we take as gen-
erating elements the (ordinary) products Fgy, - - - For,,
where 917, are disjoint subsets of M. The linear com-
binations of all such elements over the field ® form
this vector space which will be denoted by L"(31).

We now introduce linear operators in this space
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which materialize this factorization process by cut-
ting off the interaction between some groups of
particles. Denoting this grouping by the partition
P= (9, --,90), wewrite PPy, = Fp = | | 5o Fans.
We also adopt the axioms introduced in the previous
section with regard to operations by P.

One can readily verify that there is an operator
isomorphy between L”(M) and the abstract rep-
resentation space L{(M) of the last section, defined
by the correspondence @ <> F,. In view of Egs.
(17) to (19), we observe that the elements in L" (M)
corresponding to Kq; of L(M) are nothing but the
correlation functions Gy. Indeed, these equations
correspond to the so-called cluster expansion (and
its inversion).

Product versus Cluster Properties

It is physically a well-known fact that, in a set
of particles, if there are noninteracting groups, then
the correlation function corresponding to this set
vanishes (while the distribution function becomes
a product). This is the so-called “cluster property.”’
Conversely, if Gy is zero, then Fy has the product
property. It has been stated that when two sets
of functions are related only by means of relations
(17) and (19), then there is no simple and direct
proof of either statements.® We shall now demon-
strate that the partition algebra provides these
proofs.

If P is a partition whose parts denote the non-
interacting groups of particles, then the product
property is expressed, in our language, as PFy = Fy.
When Fy have the product property, then, by
definition, Gy = e(M)Fy = e(MP(ON)Fy = 0
if P(M) ¢ E(9M). Thus, we have shown that the
product property implies the cluster property.

Conversely, let us suppose that Gy has a cluster
property. That is, there is a certain grouping of
particles denoted by P such that Gy; = 0 for all
M C M whenever P(91) % E(91). In other words,
@ is nonzero only if P C P. Thus, Fyr = D_rGp =
>pcs Go = D pcs PGp = Fps. This completes the
proof of the inverse statement that the cluster
property implies the product property.

V. PRELIMINARIES TO AN APPLICATION OF
THE METHOD TO A COMBINATORIAL PROBLEM

In Secs. V-VIII, we consider an application of
the present method to a combinatorial problem in-
volving the cluster development in which distribu-
tion functions are expanded with respect to a small
parameter.

ARF, IMRE, AND OZIZMIR

The combinatorial problem under consideration
arises as follows: Consider

Gy = 2 (—1)!P'k(P)— D)IF, (21)
PEC(M)
and the expansions
Fy= 2 NFy and Gy = 2 NG,
»=0 v=0
where \ is a small parameter. One obtains
Gy = E (—l)k(P)—l(k(P) - 1)' E F;’I (22)
PeC(M) lvl=»

where v = (v, ++- , »:) denotes a set of k [= k(P)]
integers, |v| = v, + - -+ + v, and Fg = F§; -+« Fg,,
M, being the parts of P.

Suppose correlation functions @, are of order
AMIZL e, Gy = 0, whenever » < |M| — 1. This
property is referred to as the well-ordering of cor-
relations. (See Sec. VIIL.) In this case, we have from
(22) a set of relations

Fy= 2 (-1C®®) — D! 2 Fr,

Pck fvl=»
¢ <|M[-1, (3

which shows that F; are not all linearly independent.
Observe that there are some factors Fy, (9n; C M)
in the right-hand side of (23) such that »; < |91, — 1.
Therefore, through repeated use of (23), one can
express any F5, with » < [M| — 1 in terms of a
set of functions {F4,;} for which u > || — 1, p < »,
M C M. This set will be referred to as the irreducible
set. Our problem is to find the total number that
a certain cluster of irreducible factors appear in the
final expression.

The program of the remainder of this paper is
as follows. In Sec. VI, we construct absiract rep-
resentation spaces £(IM), (M S M), of C(M), so
that the elements of £(91) correspond to the linear
combinations of Fj. A grading with respect to non-
negative integers v (the degree) is introduced in these
spaces so that £(M) can be written as a direct sum
of the graded spaces L"(}M). The degree » corresponds
to the expansion power of A. A subspace Lj(}M) is
considered whose elements correspond to those G
which vanish under the well-ordering assumption.
Thus, it suffices to consider the quotion space
L'(M) [mod Lj(M)] so that to the equation which
expresses F, in terms of the irreducible set there
corresponds a congruence relation modulo L;(M).
In calculating the coefficients in this congruence
relation we use operators dy; which map L”(3) into
L’"'(M). In Sec. VII an application to the cluster
geries in which correlations are well-ordered is given.
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A short discussion of the results obtained is presented
in Sec. VIII.

VL. THE VECTOR SPACE £(M)

Let us associate with every nonempty subset
M & M the symbols Q; (# = 0, 1, ---) and con-
sider the formal products of these symbols Q) =

4 I s, Where 91, (2 = 1, « -+ | k) are the parts
of the partition P of M and v = »,, --- , v, is 2
set of nonnegative integers. All linear combinations
of such formal produets over the field ® form a
vector space £(M).

We adopt the following axioms by which the
elements of C(M) are defined as linear operators on
L(M). (i) PQ = P(M)Q =D 1v1-, QP (OM); (i) for
A, A" € L(M), a € R, Plad) = (aP)A = a(PA),
PA+ANY=PA+PA'", (P+P)A =PA+PA4;
(iii) for 4 € £(IM), B € L£(O’) with M N M = ¢,
P(AB) = (PA)(PB). It is readily verified that £(91)
are representation spaces for C(M) since (16) also
holds for these spaces.

Grading in £(M)

We define the degree of a product @, as the
integer v = |v| = »; 4+ -++ -+ »:.. The degree of an
arbitrary element of £(M) is defined as the maximum
of the degrees of all products with nonvanishing
coefficients in this element. Zero-degree term is the
constant term, and, for A € £(IM), PA is the con-
stant term if P(917) is the null partition (zero defect).

If all terms in A € £(9N) have the same degree »,
then A4 is said to be a homogeneous element with
degree v. If X &€ C(M), and if A € £(M) is a
homogeneous element with degree », then X4 is
either zero or also homogeneous with the same
degree .

Let L"(M) denote the subspace of £(M) which
is spanned by the homogeneous elements with de-
gree v. It is clear that the sum of all these subspaces
fory = 0,1, ---, is equal to £(M). Moreover,
this is a direct sum since the zero element of £(M)
can only be obtained by the sum of the zero elements
of L'(M). We thus write

200 = @ LG, ©4)

»=0
It is easily verified that every one of the subspaces
L’(M) is a representation space for C(M).
A further decomposition of L’(M) into direct sums
of its subspaces is obtained by virtue of (5) and (10),
giving

LD = @ el(D. 25)
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It is of interest to note that for any A € L’(M),
one has X(epd) = (Xep)d = (ZP'EP Ep)erd,
where X = ZP £xP € C(M). Therefore, ¢4 can
be regarded as the eigenvector of any element
X € o).

Remark: Any subspace of L’(M) which is mapped
onto itself by C' (M) can be decomposed uniquely by
forming the direct sum over all partitions of certain
subspaces of er£(M). The converse statement is also
true.

A basis set for the space e,L"(M) is obtained by
operating er on the basis elements Q3. of L(M).
One has

ePQ;’" =0
»

II 2 erenn®)QFms

s=1 {vi|=p¢’

if P'2P, (26)
where P’ = (9, ---, 9, ). Note that each term
in the right-hand side is of the form e»Q;, therefore,

the set of elements e,Q with |v] = v spans epL" (M)
so that

if PPpPP

erL’(M) = @ GerQ%, (27)

|vl=»
where the symbol & in the right-hand side denotes
the linear combinations over the field ®.
The Subspace Lj(M)
Let I, denote the set of Q7 such that |v] = »

and »; > |M;] — 1, (£ = 1, --- , k). Define the
subspace L;(M) by

LiM) = @ &eQr, (28)
Q}:GIJ
where the sum is over all Q3 (Jv] = ») which are

not in 7,. Lj(M) is mapped onto itself by C(M),
ie., C(M)Ly(M) = Lg(M). Therefore, the quotion
space L'(M) [mod Lj(M)] is also a representation
space of C(M). One has from (25) the following:

L'M)= @ ®eQr D Li(M), (29)
Qrer,

therefore, a basis of the above quotion space is the
residue classes e¢xQp (mod L3(M)) with Q7 € I,.
Now, we show that, for @7 € I,,

exQr € D, ®RQy + Ly(M).
oper,
P'CP

(30)

We use induction with respect to the defect of P.
The statement is obvious for d(P) = 0. On the
other hand, exQ; = Q7 — Ep'cp ep-Qp, and ep.Qp
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is equal to a sum over v of some terms of the form
er- Q. [ef. (26)]. Now, if Q7. ¢ I, these terms are
in L}{(M). If, however, Q). & 1I,, then by using
the induction hypothesis the proof is complete, since
P’ C P implies that d(P") < d(P).

It follows from (30) that

I'My= 2 @&Q: [modLy(M)].

v
QprEly

(31)

By virtue of (29) and the one-to-one correspondence
between @7 and epQ7, one has

L'(M) = D ®Q: D L(M).

Therefore, any basis element Q7 of L’(M) can be
expressed uniquely as

Qr > 2 oreQr [mod Ly(M)].

o
Qpr:€I, P'QP

32)

I

(33)

Our problem is thus to calculate the coeflicients
ayp.. It suffices to calculate the coefficients a}p which
appear in the expansion of Q% with » < |[M| — 1,
namely,

| Gr—
Qx =
d(P’)+(p' I =»

p’'20
where p = » — |M| + 1 is a negative integer.

In order to facilitate the calculation of these co-
efficients we shall now introduce a set of operators
9 for each 9 & M which is somewhat analogous
to differentation in power series. By a suitable succes-
sive application of these operators, one can single
out the term in the right-hand side of (34) whose
coeflicient is sought.

p’ Ad(P’)+p’
Ggp P’

[mod Lg(M)], (34)

The Operators 9y,
Let us define
ang(P)ﬂ) — p.-Qf,(P)”’_“ if PER) = EON)
9] — 14 p. =0

= 0 otherwise,

and
(35)

where 91; is the part of P which contains 91 and
1; is a vector whose jth component is §; ;, ie.,
,=@,---,1,---,0). We shall write 05,95 = 8%,.

The operator dy maps L"(M) into L"7'(M), but
it does not map Lj(M) into L;~'(M). Therefore,
one has to be careful in operating by 9y on the
congruence relations in the quotion space L’(M)
[mod Lj(M)]. We shall demonstrate that

dmLo(M) S L (M) + JGML7H(M),  (36)

where §(9m) is the ideal spanned by the partitions
which divide the subset 9T at least into two parts
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(cf. See. II). If we apply 9, again on (36), we see
that the last term vanishes by definition, i.e.,
OnLy(M) S Li~*(M) + J(OM)L™*(M).

We shall now give some of the properties of this .
operator. It is easy to see that

which can be verified by applying on any basis
element Q%.. For an arbitrary element X =
> » £pP € C(M), we then obtain

P(N)=E(N)
P(0M)=E (M)

EPP ’

where the latter sum is over all P’s which do not
divide the subsets 9% and 9%, since those which
divide 9 are annihilated by e(9) by virtue of (37)
and the others by ds;. In particular, we have

e(M — IM)dye(M)
= (M — Mox[E(M) — EGOEM — )]
where we have made use of (14).

Now, we shall prove another useful formula,
namely

EQO0)3ne(M) = e(M — IM)dxe(M). (40)

Since e(M — 9m) is of the form E(M — o) -
> perar-my £pP, it suffices to show that, for all
subsets M’ = ¢, M U M C M, MW N IM = ¢.

EQUE@N)oxme(M) = 0. 41)

The latter holds obviously when |M — 9| = 1,
since there is no subset 9’ in this case satisfying
the above conditions. We proceed by induction with
respect to the number of elements in M — 9.
Substituting (15) in (41) we obtain

E@EEEN)oxn[EM) — mZmZM (MEM — )],

39)

Every term for which the subset 91— 91 contains ele-
ments from both of the sets 9" and M — (MM \J ')
must vanish due to the induction hypothesis. Thus,
the only contributions come from the summations
over M N CMUWandMC RN M — .
Moreover, in the former sum dy commutes with
E(M — (o \J M')), whereas in the latter it com-
mutes with E(91'), so that we can replace E(M — )
by E(m\J’' — R)E(M) and E(M — ' — M)E (M),
respectively. We thus obtain

E(ME@oxE(M)E(M) — E@ U )
— EM — ') + E(m)].
Since ¢(M)Q; = 0 unless P(M) = E(M), then it
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suffices to verify that the latter quantity vanishes
when operated on Q3. One can readily see that it
is indeed so after a straightforward calculation. (See
Appendix for details.)

Now we are in a position to prove the statement
(36). Clearly it suffices to show that the basis ele-
ment e(M)Qy (v < |M| — 1) is mapped in the
space L)™' (M) + SOR)L™'(M).

We have from (39) and (40)

e(O)0me(M)Q}
= ¢(M)e(M — M)Ax[EM) — E(M)]Qx
= Z @2 — IM - STl])

X e(M)Qme(M — M)Qx-om. (42)

We see that the last quantity is in L;7(M). On the
other hand, for any 9’ 2O 9N we have, by virtue
of (38),

e(M")dse(M)Qu = e(IN")d5-e(M)Qs € Ly (M), (43)

where we have used the fact that dnQ) = Om Q%
if I C M’ © M, which follows from the definition.
Now, summing (43) over all subsets 91’ such that
m C M C M, we complete the proof of (36)
[by virtue of (13)].
We introduce a slight generalization of (36) by
writing
SLy(M) S L™ (M) + SPIL™"'(M),  (44)

where 62 = 033, --- 9%, and J(P) is the ideal
spanned by the partitions P’ such that PP’ # P.

Calculation of the Coefficients o35,

Let us select a partition P and a vector p satisfying
the condition d(P) + |p| = » and apply the cor-
responding operator 42 on the congruence (34). The
left-hand side gives p(p — 1) --- (p — |p| + 1)Q3".
In the right-hand side, only partitions which contain
P contribute, and (34) transforms into a congruence
relation modulo L~ '"*'(M) + S(P)L"~'"*'(M).

Let P; be the restriction of P on 91,, i.e. P, = P(91,)
where 91, are the parts of P’. Also let p, denote
the part of p corresponding to this restriction. We
then have

, ) k(P’)
Qe = II pioi = 1) -+
X @ = Ip] + DQF,  (45)
where m} = |[9;| — 1 + p} — |p.|. Therefore, the

terms in the right-hand side of 32Q3% which have
nonvanishing contributions must satisfy the in-
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equality p! > [p, in addition to the conditions
imposed on the summation, namely d(P’) > d(P)
and [p| + d(P) = |p’| + d(P’). The only combina-
tion which satisfies all these conditions is that
P = P’ and p} = |p,|. Thus, recalling p < 0, we have

(=D"'(Ip| =1 =p) -+ (—=p + D(—PQL”
= aftp! P! - ! Q7

[mod Lg~"'(M) + ()L™~ ().
By making use of the fact that Q4® is congruent
to Q3" modulo (P)L"~'*'(M), the sought coeffi-
cients are found as multinomials
(_l)lpl(lvl;p—l). (46)
It follows from the defining relations that |p| —
p—1=kP) — 2

VII. APPLICATION TO THE CLUSTER SERIES

P __
Ogp =

The combinatorial problem of expressing the »th
order, [M|-particle distribution function under the
well-ordering assumption in terms of the irreducible
set was explained in Sec. V. In order to apply the
results obtained in Sec. VI to this problem, we first
construct a vector space generated by the clusters
of distribution functions in which the elements of
C(M) are defined as linear operators. Then we
demonstrate that between this space and the ab-
stract representation space developed previously
there is an isomorphy which is compatible with the
operations of C(M).

Let L%(M) denote the vector space spanned (over
the field ®) by the (ordinary) products F} =
Fg, -+ Fg, of the distribution functions where
v; 2 0. Define the operation P = (91,, --- , 9My)
such that

k
> 11 Fs..

ly|jmy $=1

PFy =

Also assume that this operation satisfies the axioms
given in the previous section.

It is readily seen that this space is operator
isomorphic to the representation space L’(M) of
the previous section through the correspondence
Q% < Fi. We also observe that under this cor-
respondence the elements ¢(9M)Q}; are mapped onto
the correlation functions Gy, so that the space
epL"(M) is isomorphic to the space generated by
the clusters of correlation functions G of order
v (= |v]).

The subspace of L% which corresponds to L}(M),
on the other hand, is generated by such clusters
G; that there is at least one factor Gy, satisfying
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the condition »; < [91;] — 1. Therefore, if correla-
tions are well-ordered, this subspace contains only
the zero element. This implies that under the well-
ordering assumption the space L5(M) is operator
isomorphic to the quotion space L’ (M )[mod L(M)].
Thus, the congruence relations previously given are
valid as equations in L5 (M).

The following expansion of Fj, in terms of the
irreducible functions is then obtained:

Fu= X (_1)1p|(k(P)p— 2)1”2(””,

d(P)Y+ipl=»
p20

@ < |M| — 1).
VII. DISCUSSION

In the present investigation, an attempt is made
to study the algebraic foundations of the cluster
expansion which is widely used in statistical me-
chanics. For this purpose, the partition algebra, C (M),
is introduced and studied to some extent. Generators
of this algebra are partitions which are regarded as
operators on finite sets M. The set of minimal
idempotents of this algebra is constructed explicitly.
In physical problems, the elements of the set M/
correspond to state variables of particles in an inter-
acting system and the partitions are interpreted as
operators which remove the interactions among cer-
tain clusters of particles. It turns out that the
correlation functions of statistical mechanics cor-
respond to the representation of the minimal idem-
potents of C(M) in an appropriately constructed
representation space of this algebra. This interesting
result facilitates the demonstration of the equiv-
alence of the cluster vs product properties under
rather general conditions.®

It is expected that the techniques presented herein
will be useful in handling the combinatorial prob-
lems associated with the use of the cluster expan-
sion. To demonstrate this point, we have considered
the cluster expansion in which the distribution and
correlation functions are expanded in powers of a
small parameter. When correlations are well-ordered,
i.e., Gy is of order A'*'™*, the distribution functions
to a given order are not all independent and can
be expressed in terms of a finite irreducible set of
distribution functions. As an application of the

8 Since this paper was submitted, a paper by 8. Sherman
appeared in J. Math., Phys. 5, 1137 (1964) in which the
equivalence of product property and cluster property is

roved by a different method. Sherman uses the generalized
hnenblust algebra and obtains the result in a simple
fashion. However, we feel that the use of the partition
algebra provides an insight to the understanding of the
structure of the cluster relations and, moreover, it seems to
have the possibility of other applications.
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present technique the expansion coefficients are
calculated. The well-ordering of correlations is a
property of many physical systems. For example,
in plasmas in equilibrium and also under Bogoliubov
hypothesis correlations are well-ordered with respect
to the interaction strength.’ The same order property
is usually assumed in the nonequilibrium initial-value
problem associated with the BBGKY chain. Hence,
the above result is applicable to a wide range of
problems.

On the basis of above applications we hope that
the algebraic techniques described presently will be
useful in statistical mechanics.

APPENDIX

In this appendix we shall demonstrate in detail
that

EQUEON)ox[EM) — E(on \J am’)

— EWM — ') + E()]Q = 0.
The first term gives, using the definition of dy,
E(MEON)3: Qe

=@v—-M+D) X

Qn 3 MV
MM LM’y
vitvatrg=y—1

where we set M’ = M — (O’ U 9m). The second
term yields
EQ@UE@)omE@T \J M)Q

= E@0) 2. G — (o0 m| + 2)Quum Qi

¥itrva=v—1

X Gura— ol — 9]+ 2)QHQH QX -

The third term yields
EQEQ) 0xEM — M')Qi
= E@0) 22 (s — M|+ || + 2)Q5 Q-

vatva=v—1

X Gt M+ V] + QR0 Qi

and finally for the last term
EQUE@N)0xE@M)Q

=BEO) Y G — M|+ 2QnQu-m

Pitpg=y=1

= 2 = |+ 2)@5Q5-Q3.
Pit+vatra=p=1
Collecting the terms, and observing that », -+
va +vs =» — land [M| = |9 4 || + |[M']
we readily arrive at the desired result.

9K, [mre and E. Ozizmir, Nucl. Fusion 4, 1, 105, 179
(1964).
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The cluster-star equations are inverted by using the general Mgbius inversion formula. Since
Uhlenbeck and Ford have many instances of systems of equations to which general Mobius inversion
can be applied, this paper first presents a general survey of Mobius inversion, then some graph termi-

nology, and finally the cluster—star inversion.

I INTRODUCTION

N Ref. 1, Uhlenbeck and Ford raised the problem
of inverting the relation they gave between the
cluster functions U, (r,, -+ , 7.) and the star func-
tions V., (r, --- , r,). This we do here using the
general Mobius inversion formula.? [UF] has many
instances® of systems of equations to which the
general Mobius inversion formuls may be applied.
In the case at hand, cluster-star inversion, the
answer is of physical interest and the Mdobius func~
tion is new, so we present the details here. First
we give a general survey of Mobius inversion, then
some graph terminology and the cluster-star in-
version.

Before continuing we should remark that (1) the
Moébius funetion has already been used as an aid
in solving a statistical mechanical problem by
Nettleton and Green* who obtained an expression
for the entropy density of a statistical mechanical
system in terms of molecular distribution functions
and (2) an alternative method using generating fune-
tionals for cluster—star inversion due to Stell is given
in an adjoining article together with additional phys-
ical and historical remarks.’

II. INCIDENCE ALGEBRA

Since the general Mobius inversion formula can
be applied to physical problems other than those

* The work of S. Sherman was supported in part by the
Na.tional Science Foundation, Grant No. G 24334 and GP 3941.

! G. E. Uhlenbeck and G. W. Ford, “Theory of Linear
Graphs, ” in Studzes in Statistical M echamcs, I edited by J.
de Boer and G. Uhlenbeck (North-Holland Publishing
Company, Amsterdam, 1962). This reference will be referred
to as [UF]. See pp. 158-9.

2 Historically significant references are Weisner, L., Trans,
Am. Math. Soc., 38, 474 (1935); P. Hall, 7, Quart. J. Math.
1, 134 (1936); and M, Ward, Duke Math. J. 5, 357 (1939)
The author learned about this theory from G.-C. Rota, Z.
Wahrscheinlichkeits-theorie Verw. 2, 340 (1964). Section II
is a summary of relevant parts of Rota. The numbering of
propositions 18 that used by Rota.

3 See Egs. II (10), (11), (24), (28), and (39) and III (9),
(30), and (33) in [UF].

E. Nettleton and M. 8. Green, J. Chem. Phys. 29,
1565 (195 ).
G. Stell, J. Math. Phys. 6, 1193 (1965) (following article).

associated with the specific inversion presented here,
we give a survey of the general theory and then
follow it by some graph terminology and the cluster—
star inversion,

Let P be a partially ordered set whose relation
is written < so that

z<y and y<z imply 2<z2
and

z<y and y <z imply =z =y.

We write z £ y if it is not true that z < y.

Examples:

1. P, =N = {1,2,3, ---}, the natural numbers,
with the ordinary order so that 2 < 5 and 2 < 6.

2. P,=N = {1,2,3, ---}, the natural numbers,
with # < y meaning 2 divides y so that 2 < 6
but 2 £ 5.

3. P, = 2* the collection of subsets of 4 with
z < y meaning x C y. Thus, if 4 = {1, 2, 3, 4, 5},
then {1, 2, 3} < A but {1, 2, 3} £ {2, 3, 4}.

4. P, is the collection of all partitions of A. A
partition of A is a collection of disjoint subsets
(called blocks) of A which exhaust A. Let z < y
mean each block in z is a subset of some block
iny. IfA={1,2, 3,4,5},1}}1611{{1,2}, {3;4}; {51} <
{{1, 2, 3, 4}, {5}} and ({1, 2}, {3, 4}, {5}} £
{{1, 2,3}, {4, 5}}.

The segment [v, y] = {z: 2 < 2z < y}, the set
of all z greater than or equal to = and less than
or equal to y. A partially ordered set is locally finite
if every segment is finite. P, and P, are locally
finite. If 4 is finite, P; and P, are locally finite,
otherwise not. The product, P X @, of partially
ordered sets P and @ is the partially ordered set
{(p, 9:p € P and ¢ € Q} where (r, 5) < (p, q)
meansr < pin Pand s < ¢in Q.

Suppose P isa locally finite partially ordered set.
We can now define the #ncidence algebra of P by
first considering the set of all real-valued functions
k(z, y), where both 2, y € P and such that h(z, y) =0

1189
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if z £ y. Generalizations to other ranges are possible
but not considered here. If g and & are two such
functions the sum of g and % defined by (g+h) (z, y) =
g(z, y) + h{z, y) is such a function. Similarly a
scalar multiple of such a function is such a function.
We define the product k = gh by

k(z,y) = 52< g(z, 2)h(z, y).

Since P is locally finite, the sum on the right is
over a finite set and no convergence problem arise.
Note that if z £ y, then k(z, y) = 0. The collection
of functions considered here with operations of addi-
tion, multiplication and multiplication by a scalar
constitutes a real associative algebra, the incidence
algebra [written @(P) or @ if P is clear]. In general
@ is not commutative. There is an obvious parallel
between matrix operations and those in @(P). The
identity element of @ is §, the Kronecker delta, de-
fined as usual by

8z, y) = {1’ r=Y
0, z#y.
Thus hé = 6h = h. We define the zeta function
§ € a(P) by

<
N

0, otherwise,

Propostiion 1. The zeta function of a locally finite
partially ordered set is invertible in the incidence
algebra.

Proof. Let
1, r =1,
ux, y) = — Sz; ulz, 2), <y
zlz<¥Y ’
0, otherwise,

This constitutes a recursive definition. Note that
pi,z) = 1.1 =1landif 2 < y, then

2. ulz,2) 1Y)

z5s<sy

- (2 ue,9) + iz, = 0.

Sa<y

ﬂf(x: y) =

Noting the parallel with matrices we also have {u=4§
and p, which is called the Mdbius function, is the
unique inverse to {.
Ezxamples:
(1) In P,
1, n = m,
pim,n) = -1, n=m+1,
0, otherwise,

S. SHERMAN

(2) In P,
0, din,
p(n/d), dln.

Here fi(m) is the classical Mobius function; g(m) =
(=1)* if m is square-free and k is the number of
prime factors in m, while u(m) = 0, otherwise.

(3) In P;, with A finite,

s, y) = (1",

where z < y and n(z) is the number of elements in z.
(4) In P,, the Mobius function® is more com-
plicated. If A = {1, 2,3, --- , a} witha < « then

M({{l}r {2}7 ] {a}}r {{1) 2,38, ;a}})
= (—1)"a — 1.

Proposition 2 (Mébius inversion formula). Let f
be a real-valued function such that, for each z in
locally finite P, f vanishes at all except a finite
number of y < z. Suppose

p(d,n) = {

F@@) = X 1.
Then =
f@) = ZS‘, Fy)uly, =).
Proof.
F(z) = ;f(y)f(y, z).
Thus

; F(z)u(z, 2) = Z 2 Wiy, D)ulz, 2)
= E 1) oy, 2) = ().

Examples:

(1) In P,, the Mobius inversion formuls asserts
F(n) = 273, f(j) implies f(n) = g(n) — g(n — 1) =
Ap(n), the first difference of p at n. Thus in this case
the Mébius inversion formula is a discrete version
of the fundamental theorem of the calculus.

(2) In P,, the Mobius inversion formula asserts

F(n) = gﬂ: f(d)
and implies
o = 3 Fau(l)-

¢ Schiitzenberger, M. P., Coniributions aux Applications
Statistiques de la Theéorie de L'Information, Pub. Inst. Stat.
Univ, Paris, 3, 1 (1954), especially p. 25, and R. Frucht and
G.C. Rota, “A Mébius foe Inversion Formulafor Partitions,”
Notices Am. Math. Soc. [Abstract 63 T-250 10 (August, 1963),

. p. 495).



CLUSTER-STAR INVERSION

3) In P,, the Mobius inversion formula asserts
that f 4 = {1,2, -+~ , a} and F(z) = Zsz @),
then f(z) = X ,<. (—1)"“"g().

Proposition 6. Let P X @ be the direct product
of locally finite partially ordered sets P and @. The
Mébius funetions of P X @ is given by

l‘((x: v, (u) 1) = u(z, Wuly, v).

Note the use of a single letter to denote the Mdobius
functions of three partially ordered sets.

Proof. 1t is trivial that p((z, ), (z, ¥)) = 1 =
u(x, z)u(y, y). Suppose for each (21, ;) < (, v),
w((z, ¥), (21, 22)) = u(z, 2)u(y, 22). Then

w((z, 9),(u,v)) = D DR (&, 9),(1, 22)

= — E ulz, 2;)P(y, v)

z2581<u

- Z ulz, u)ﬂ(y’ 25)

¥Sss<y

>

2881<4,¥S2a <y
= I‘(xa u)l‘(y’ 1)) + l‘(x; u)ﬂ(yr v)
_I‘(x; u)u(y, 1))
w, Wy, v).

ulz, 2))uly, 22)

i

1. GRAPH TERMINOLOGY

While the terminology of [UF] will be followed,
some additional comments useful for this problem
are made here. Among the labeled connected graphs
are the labeled complete stars. These are labeled
graphs such that each pair of different points or
vertices is joined by a single line. In graph G, com-
plete star K is maximal if K is not a subgraph
of a larger complete star in G. A complete-star free
(c-s tree) is a graph such that each line is part of
s unique maximal complete star and if points P,
and P, (P, may be equal to P;) are in the same
maximal complete star K, then P; may not be
connected to P, by a sequence of different lines
not in S. A labeled c-s tree can be regarded as a
collection of labeled complete stars hung together
at articulation points.

Suppose we consider the collection of labeled c-s
trees with points labeled 1, 2, - - - , n. This collection
of ¢-s trees can be regarded as a partially ordered
set if £ < y means each line of z is a line of y.
K, the labeled complete star with n points labeled
1,2, ---, neatisfies z < K, for each z.

Let a(z) be the number of articulaiton points of x
and let A(x) = {[1; ], ---, [a(@); 2]} be the set
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of articulation points of z. If 2 = K,, then a(r) = 0.
Let o{(z) be the number of maximal complete stars
in z and let K(x) = {KQ1; z), --- , K(o; )} be
the set of maximal complete stars in z. If z = K,,
then o(z) = 1 and K(z) = {z}. Let 6([i; z]) be
the number of mazimal complete stars containing [i; ]
and let &([5; z]) = {K(j;2) :[{ ;2] € K(j; )} be
the set of those maximal complete stars, 1 < 7 < a(z),
which contain [£; z]. Of ecourse, n(8([; z])) = 8(i; z]),
where n(4) means the numbers of elements in A.
While \ U2 ®([¢; 2]) = K(2), if a(z) > 2, then the
®([£; z]) may fail to be disjoint. Thus {®([;z]) : 1 <
¢ < alfs; z])} in general fails to be a partition of
K(z). A relation between o(z) and the §([f; z]) is

a(zr)

L+ 205 — D = o@.

This may be proved by starting with a complete
star, successively hanging complete stars at articula-
tion points, and observing the change at each stage
on both sides of the equation. Any c-s tree can be
generated by so hanging complete stars on a complete
star.

We associate with labeled c-s tree z having n
points two functions U, and U, of n variables
Ty Ta, * -+, T, Satisfying the following requirements:

(1) If z is a labeled complete star, then U, and
V. are symmetric functions of the r’s whose sub-
seripts are labels of points of z.

(2) If z has the set of maximal complete stars
K(z) = {K(j;2) : 1 £ j £ o(z)}, then

a{z)

A, = H Uk

i=1
and

o{z)

Ve = H'Ux(f:a)-

im1

IV. CLUSTER-STAR INVERSION

Equation (II1,30) of [UF] is equivalent to the
following: for each n > 2 in the partially ordered
set of labeled ¢-s trees with n points

qU, = ,_:_‘,'o,.
The translation between the [UF] notation and that
used here is as follows: Suppose z is a labeled c-s
tree with n points. Then U, as used here corresponds
to 4, in [UF]. Note that there are more equations
here gince x may fail to be a complete star. The new
equations introduced here follow trivially from the
definitions here and Equation (II1,30) in [UF]. It
should be mentioned that the set up here is more
general than that in [UF] since we allow U, » U,
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3 2 1 3 2 1
4 5 & 5
Y, Y,
Fia. 1,

even though z and y are complete stars with the
same number of points, e.g., if z and y have three
points and z is labeled by 1, 2, and 3, while y is
labeled by 2, 3, and 4, there is nothing in our con-
siderations that forces us to assume U, = U,.

The question raised in ([UF], p. 159) is the inver-
sion of the equations and this is given by

0V, = Ez cuvl-‘(y) x))

where u(y, ) is the Mébius function for the partially
ordered set of c-s trees with » points. Since the
solution for z = K, immediately yields the general
solution, we consider only the case = K,. This
is also the only case considered in [UF].

4. EVALUATION OF MOBIUS FUNCTION

The evaluation of the Mdobius function u(y, z)
is the next order of business. To that end we examine
the partially ordered set of labeled c-s trees with
7 points.

Suppose y; < ¥, then A(y.) C A(y.). Thus for
each [¢; ] there is a unique [7;; y,). If & = {K,
K? ..., K™} is a set of labeled complete stars
let X* be the labeled complete star containing all
the points of K' U K* U ... U K™, Each [j; y,]
in the complement of A(y,) with respect to A(y,)
is a pseudoarticulation point of c-s degree 1 of y,
in the sense that all the lines of y, incident with
[j; ya] lie in a minimal complete star “K([7; v.]; ¥2)”

S. SHERMAN

of y, which may fail to be a maximal complete star
of y,. This is illustrated in Fig. 1 where y; < ¥,
Ay) = {2, 3, 4}, A@y:) = {2}, “K([4; 0], 42)” is
the complete star associated with the set of points
{3, 4, 5} and “K({4; v}, ¥.)”is not a maximal
complete star of y,.

Intheoriginaldefinitionseach nonarticulation point
could have been called a pseudoarticulation of c-s
degree 1. With that convention the relation between
o(z) and c-s degrees would be maintained where
now the summation could be over all points of
c-s tree.

To continue with the analysis of 4, < y., we note
that each K(j;; ¥,) is a subgraph of some unique
K(j,; y2)- From the above remarks we see also that
the segment [y,, K,] as a partially ordered set is
isomorphic to

a(y)

X [{{1}, {2}, ---, {6[4; wil}},

i=1

X {{1,2,---, 8[s; ;i1}}],

ie., to a product of initial segments in the partially
ordered set of partitions. From Proposition 5 and
Example 3 after Proposition 1 we conclude that’

a(yi)

W K2 = T (=0 ((f5 0] — D!
alvi)
= (=1 I“I1 ((z; 3 — DL
Thus
aly)
Uk, = 2; U, (—1)H® I;I1 (75 9]) — DL

7 The partially ordered set of labeled c-s trees with » points
is what Rota calls a geometric lattice or mairoid which he
studies in Sec. 7 of the reference cited in (2). The rank of
z is n — o(z) which explains the dependence of the sign of
u(z, K.) on o(x).
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The cluster-star equations are inverted. These equations, Eq. (2.1), define a set of cluster functions
U in terms of star functions V, for 2 < n < m. The inversion, Eq. (2.2) gives the V, in terms of
the Un;2 <m L n.

The cluster-star inversion yields the coefficients 8, that appear in the number-density expansion
of the logarithm of the grand partition function £ of a statistical mechanical system in terms of the
coefficients b, that appear in its fugacity expansion, even when the system is in the presence of an
external field.

In the course of obtaining the inversion, an expression for the work necessary to bring a particle from
infinity to a point r inside a classical system at equilibrium is obtained in terms of the V,, and the
one-particle distribution function p(r), and also in terms of the U, and p. The expression in terms
of the V. and p has been previously derived by others with restrictions on the form of the potential
energy; the alternative expression in terms of the U, seems to be new.

Operators with essentially the same algebraic structure as the V,, appear in a recently considered
asymptotic expansion of the distribution functions of a nonequilibrium system. The cluster—star
inversion facilitates the determination of these operators in terms of the solution operators of the

AUGUST 1965

n-body Liouville equation, n > 2.

I. INTRODUCTION

N their monograph, The Theory of Linear Graphs,
Uhlenbeck and Ford' pointed out that the prob-
lem of inverting the relationship that defines the
cluster or Ursell funetions U,,(ry, *++ , 7) In terms
of the star or Husimi functions V,(r, «++ , )
had not yet been solved at the time the monograph
was written.

Integrals of the U, and the V., appear as coeffi-
cients in the fugacity and number-density expan-
sions, respectively, of the logarithm of the grand
partition function of a statistical mechanical system.
It is a simple matter to characterize the U, as
a sum of products of the V,, n < m, by representing
the latter as linear graphs [see Eq. (2.1)] or by using
some equivalent notational device. Also it is clear
that any V,, can be written as a linear combination
of products of U,, n < m. The inversion problem
is to find the rule for writing the coefficients in this
linear combination. This rule is given in Eq. (2.2)
in language appropriate to the graphical notation
we have used to write the equations.

Our method of obtaining the inversion is an ap-
plication of the formalism that has been independ-
ently developed and used by a number of workers®

* This work was supported by the National Science
Foundation under Grant No. GP 2003. .

t Present address: The Belfer Graduate School of Science,
Yeshiva University, New York, New York. .

1 G. E. Uhlenbeck and G. W. Ford, “Theory of Linear
Graphs,” in Studies in Statistical Mechanics. I, edited by
J. cFe Boer and G. E. Uhlenbeck. This reference will be
eferred to as UF.
" 2 See, for example, T. Morita and K. Hiroike, Progr.
Theoret. Phys. (Kyoto) 25, 531 (1961) or C. De Dominicis,
J. Math. Phys. 3, 983 (1962).

in the past few years to obtain the general terms
of a variety of cluster expansions. This formalism
is based on functional differentiation and a simple
procedure for resumming series. An alternative
method of obtaining the cluster-star inversion, due
to Sherman, is given in a separate article.?

An equation that is closely related to our result
was first obtained by Mayer,* and later by Kil-
patrick.’ It involves the integrals of U,(ry, -+ + , 7')
and Vm(rly Tt 7',,,),

y Pa) dry oo drp,

1
b.. _—_mf Unry, * -

© T dry - AP,

1
By = —(m——T)'f Valry, -+
Here we assume that each integration is over all 7,
such that |r,| < «. The equation is

b= T{0P = 14 X mpyan
-
x T2,

where j runs between 2 and k 4 1 and the first sum
is over all sets of nonnegative integers {m,, m, ---},
such that Zi (j — 1)m; = k. The derivations of
this equation given by Mayer and Kilpatrick avoid
the problem of inverting the cluster-star equations
themselves. However the equation is only correct
when the integral of each product of the V,,(ry, - « +,7)

t? 1S.)Sherman, J. Math. Phys. 6, 1189 (1965) (preceding
article).

4+ J. E. Mayer, J. Chem. Phys. 10, 629 (1942),

§ J. E. Kilpatrick, J. Chem. Phys. 21, 274 (1953).
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that appears in the cluster-star expression for
Un(ry -+ r.) can be factored into a product of the
integrals. This happens to be the case when these
functions are associated in the usual way' with a
physical system that is free of external fields and
hence is translation invariant. Our expression for
each V,, in terms of U,, n < m immediately yields
the general relationship between the b,, and the 8,
which reduces to Mayer’s equation for the special
case in which the integrals of the products of V,’s
can be factored into products of integrals. Our result
cannot be recovered from Mayer's equation, how-
ever, since information is irretrievably lost when the
integrals are factored. Recently Wu® obtained a
result that is equivalent to the general expression
for B, in terms of b,, n < m, and hence Is equivalent
to our result. His method bears no obvious resem-
blance to the procedures used by either Sherman® or
the author.

Although the equation giving the 8, in terms of
the b, was first considered in connection with a
classical statistical mechanical system at equilib-
rium, it is possible o express the V, direetly in terms
of the interaction potential and temperature’ for
such a system. Hence it is unnecessary to find the
inversion in order to obtain cluster expansions for
thermodynamieal quantities and the n-particle dis-
tribution functions in terms of the one-particle dis-
tribution function, interaction potential, and tem-
perature. On the other hand, the U, can themselves
be expressed simply in terms of the potential and
temperature’ and hence the inversion leads to a
second representation of the V, as functions of these
quantities. For most purposes the first representa-
tion, which can be expressed in terms of irreducible
clusters of Mayer f-functions’ (and suitable gen-
eralizations of j-functions if n-body forces are present
for n > 2), is probably more useful.

Recently, asymptotic expansions have been de-
rived for the n-particle distribution functions of a
nonequilibrium system. One of these expansions® in-
volves operators U, with the same algebraic strue-
ture as the V,, (except for a certain lack of com-
mutitivity.) The cluster—star inversion enables one
to give a representation of these operators in terms

8 F. Y. Wu, J. Math. Phys. 4, 1438 (1963).

¥ See for example Ref. 1, p. 150 for Vi in ferms of the
Mayer f-function where the potential consists only of two-
body terms. A discussion of the more general non-additive
case can be found in Friedman's book, Ref. 13,

#E. G. D. Cohen, Physica 28, 1025 (1962). A similar
expsansion that does nob involve the introduction of the V,,
has been given by M. 8. Green and R. A. Piccerelli, Phys.
Rev. 132, 1388 (1963). In order to directly compare the two
expansions, the cluster-star inversion must be used.
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of the solution operators of the n-body Liocuville
equation, n = 2, 8, - -+ . The author has investigated
an alternative representation, anslogous to the f-
function representation, and intends to make a
comparison of the utility of the two representations
in a future publication.

When used to obtain the cluster-star inversion,
the generating-functional method yields as a bonus
an expression for the work necessary to bring a
particle from infinity to a point inside a classical
system at equilibrium in terms of the one-particle
distribution function p(r} and the star functions V,,.
The expression (from which the In E in terms of p
and the ¥, can be easily obtained) is valid for a
system with n-body terms with no restriction on #,
ie., for & nonuniform system with a nonadditive
interaetion potential. Similar derivations of this
expression have previously been given for uniform
systems® (for which n > 2) and systems with addi-
tive potentials (for which n < 2).” Our alternative
representation in terms of p and the U,,, rather than
the V,, seems to be new.

As the above paragraph suggests, when the gen-
erating functional formalism is applied to a problem
associated with a physical system, it is apt to be
rich in objects that have physical significance. This
seems to us an attractive feature, and we have made
no attempt to bypass any of the structure of the
method in order to save s few steps in getting out
the inversion prescription as quickly as possible.
Sherman’s use of the Mobius inversion formula, on
the other hand, is ideally suited to obtaining the
inversion with & minimum of apparatus.

II. SOLUTION BY MEANS OF GENERATING
FUNCTIONALS

1. Terminology and Lemmas

In this section we follow the notation of UF
closely but for convenience we make a slight eon-
ceptual generalization. We represent products of
functions and integrals of such products in a way
that is a straightforward extension of the use of
linear graphs to represent products of functions of
two vector variables and their infegrals. Just as
linear graphs arve collections of vertices, between
certain pairs of which are lines, our graphs are col-
lections of vertices, between certain pairs of which
are lines (one-dimensional faces), among certain
triplets of which are triangles (two-dimensional

? See for example, X. Husimi, J. Chem. Phys. 18, 682

(1950).
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faces), and, in general, among certain n-tuples of
which are (n — 1)-dimensional faces.'®

A vertex is called an aritculation point if upon
its removal, the graph of which it is a part separates
mmto two or more pieces. Here the removal of a
vertex is meant to imply the removal of a neighbor-
hood of the vertex so that all connections at the
vertex are broken, A graph containing no articulation
points is an zrreducible graph.

We call a graph simple if any two faces share
at most a single vertex. Thus

and . ﬁ\m
are not simple, while
2 2 4
Y AN

are simple. Simply connected will have its usual
meaning. Thus the third graph shown above is
simply connected and the fourth is not. In dealing
with nonsimple graphs one can think of connectivity
either in terms of the point set associated with the
rectilinear realization of a graph or in terms of faces
that are considered to be connected only at vertices,

can be considered as a simply connected traingular

point set or as the doubly connected graph e
Since we shall consider only simple graphs in this
paper, the question of which convention is most
convenient to use does not arise here.

We refer to a vertex that is used to represent
the function »(r,) as a »-vertex; a l-vertex is the
vertex that represents the function unity. We call
a face that represents the function F,(ry, rey -+, 7a)
an F,-face. Here v(r,) is a function of a single
varisble r, and F.(ry, 13, -+ , 7.) I8 a symmetric
function of the variables ry, 74, **+ , 7%

In the terminology of UF, a complete star is a
linear graph such that between every pair of vertices
there is a line. An F,-face can be identified with a
complete star containing n 1-vertices and ${n(n—1)]
f-lines by setting

1,1

16 {, L. Friedman and E. G. D. Cohen have also con-
sidered the use of such graphs. See for example Tonic Solution
Theory by H. L. Friedman (Jobn Wiley & Sons, Inc., New
York, 1962).

H flrey ).

1Si87<n

Fn(ru'rz’ ot 7rn) =
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When (1.1) is used, a complete star tree of UF is
identical with the simply connected simple graph
of this seection.

In our correspondence between graphs and in-
tegrals a black vertex is not labeled and corresponds
to a function of a dummy wvariable over which
integration is performed, while a white vertex is
labeled by the variable with which it is associated.
Thus a white p-vertex labeled r, 13 a vertex that
represents the function p(r;). To each integral there
corresponds not just a graph, but a graph times «
where ¢ is the symmetry number of the graph. This
is the order of the group of permutations of the
black vertices that leave all of the connections of
the circles invariant. An example of the correspond-
ence between integrals and graphs is shown below.

- % j dry drs dre glr)f(ra)f(rs)

£ X go)F{ry, 12, 73, 14)-

In this example ¢ = 3! = 6 since any permutation
of dummy labels affixed' to the black vertices would
leave such a labeled graph unchanged.”” We note
that such dummy labels do not actually appear on
the graph, which is labeled only by the coordinates
that have not been integrated over.

For the purposes of this section, only the algebraie
properties of integrals are of interest, not their func-
tion-theoretic significance. When we speak of the
addition and multiplication of integrals, we refer
to the manipulation of integrals as algebraic ob-
jeets, using the ordinary rules of algebra. Thus

é‘ f drg d?'3 dr.g g(Tl)g (7"2)9(9"3)9(7‘4)}? 4(1'1) STRED 7'4)
X % f dr dry f(ra)f(rs)Fs(ry, 72, 75)

1
= 1_2 f dry drs drs dry drs drs g(rx)g(rz)g(rs)g (r

X o)) Fo(riararardFa(rasre).
This can be represented graphically as

5
By
¥
g 3 ¥
£ g
. 3 x 4 £ - . g
g
1 -1
o 1 31 4
4

11 Another way of putting this is to say that any permuta-
tion of the variables of the fully labeled graph that corre-
sponds to the integrand leaves that graph invariant. This is
consistent with the fact that the integrand itself remains
invariant, since F, is symmetric.
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We shall use the concept of funetional differentia-
tion in the same spirit. The operation of functional
or variational differentiation has a well known'® def-
inition in terms of a limit, but only the algebraic
structure associated with this operation is of interest
to us here.

We define addition, multiplication, and exponen-
tiation of graphs in terms of the sum, product, and
exponent of the integrals which the graphs represent.
There is then the following difficulty with produects:
the product of two graphs is not necessarily a graph.
That is, if T, is a graph corresponding to the integral
I, divided by the symmetry numbers o, and T,
corresponds to I/, then IT» = I,I,/0y0,, butb
if we draw the graph associated with I, = I,],,
its symmetry number o, will not in general be ¢,0,.
For example, consider

T, = z"i‘“; = fd"'z fr)fr)E(ry, 13); o =1,
Ty =1,
Ty = O = [ dndrs PECHCIF G P

is not one but two.

2 s
Here the o5 of = 0< .

For convenience, we define the star product of two
simple graphs each containing one white ecircle
labeled r,. Using the notation of the last few sen-~
tences, we set

I', * Pg = P1P2(9'1§‘2/0'3) - Illg/o'_g‘

The star product of more than two such graphs
is defined in an obvious way. It is always a graph.

In our discussion, we shall use the following
lemmas. Since these results, with minor differences,
have been proved before in the literature® we shall
not reproduce the proofs here.

Lemma I. Let § be a set of distinet connected
graphs Ty, Ty, -+, I';, - -, each consisting of some
or no black vertices, one white 1-vertex labeled r,
and some or no faces. It is assumed that no star
products of members of G are in G. Then if § is
the set consisting of all graphs in ¢ and all star
products of graphs in g, the sum of all graphs in
F = exp {the sum of all graphs in g} — 1. The
exponentiation here is relative to the ordinary prod-
uct, rather than the star product.

GEORGE STELL

Lemma II. Let T be a graph consisting of faces
and black vertices such that certain of the black
vertices are f-vertices. Then

T - [The surn’of all distinet graphs that are obtained from I' by]
'5 f(r) #= |changing a black /f-vertex into a white l-vertex labeled rl.

We note that the statement of Lemma II could
be used as the algebraic definition of functional
differentiation. Then, for the purposes of this paper,
the only lemma related to differentiation that we
would have to prove is the statement that if two
sums of graphs are equal, their functional derivatives
are equal.

Lemma III. Given G, a set of all distinet connected
graphs, T(ry), Ta(ry) +-- , each of which consists
of one white vertex labeled r,, some or no black
vertices, and faces; let f{r;) be the function defined
by the sum of the graphs in g and let G be any
connected irreducible graph containing one white
vertex labeled with any label, say r. Suppose that
F is the set of all distinct graphs &,, ®,, --- , each
of which is obtained by replacing each black vertex
in @ by some T',. The replacement is to be made
so that when T, is attached to G, it is attached
by its white vertex (which is first stripped of its
label and blackened). Then

The sum of graphs in § = the graph obtained
from G by letting all the black vertices be
f~vertices.

The following points are worth noting.

(i) It is unnecessary to specify anything about
the functions that correspond to the vertices and
faces of the ', and G.

(i) In forming a particular &, from @, the same
T, can be used in replacing several, or all, of the
black vertices of G.

2. The Problem and a Sketch of its Solution

We are given a set of symmetric functions

Uulry, <+« , 12), n 2> 2, defined in terms of the set
Valry, <+, 1), n = 2, by the following relation-
Shjp.w

The le;:m ofl;s:l distinet simx;ly 2 ted
simple gra consigting of » white 1~
Us(rn ' 7‘::) = [ :]

vertices labeled ri through rs, respec- |*
tively, and Vm-faces, 2 <m <n

2.1
We prove that

13 See, for example, V. Volterra Theory of Functionals
(Dover Publications, Inc., New York, 1959).

13 Ref. 1, p. 158,
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The weighted sum of all distinct siraply:
connected simple graphs consistil of
n white 1-vertices labeled r1 throug

respectively, and Uwm-faces, where 2 <
m < n. The weight of each graph i3

H (_1)(k¢—l)(ka_1)!

1<asm

Vu(rl; v ,T,.) =

2.2)

Here the product is taken over all vertices and &,
is the articulation degree or multiplicity of the vertex,
defined as the number of pieces into which the graph
separates if the vertex is removed.

We give a sketch here of the way things go and
relegate the details to an appendix. We define a
functional L[U,, ¢] of the functions U, and the test
function z(r). We next introduce both a new test
function

p(r) =
and a new functional
W = In [8L/82(r)]. 2.4)

We then compare the expression for W written as
a functional of the V, and p with the expression for
W written as a functional of the U, and p. We
shall denote the first function as W[V,, p] and the
second as WI{U,, p]. The result of the comparison
is Eq. (2.2).

Although the idea is simple encugh, getting the
two different representations of W involves a number
of steps. The first step in obtaining W as a functional
of the V, and p entails rewriting L as a functional
of the V, and z. We shall denote this functional as
L{V,, 2. The rewriting can be done immedi-
ately, using Eq. (2.1). Lemma II then yields both
8L[V,, 2]/62(r) and p(r), which is 6L[V,, 2]/6 In z(r).

SL/6 In 2(r) 2.3

GEEVn, z]
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From &8L[V,, 2]/82(r) and Lemma I, we obtain
In 8L[V,, 2]/82(r). It is then easy to guess what form
In (6L/62) has as a functional of V,, and p. We could
confirm the guess by using our expression for p(r) =
8L[V,, 2]/8 In z(r) in the assumed expression for
WIV., p]and verifying that it givesIn { 8L[V,, z]/82(r)}.
However, more formally and more directly, we
simply apply Lemma III to 6L[V,, z]/62(r) and
8L{V,, 2]/8 In 2(r) and get W[V, p], without guessing
anything in the first place.

It is still necessary to find In (6L/8z) as the func-
tional W[U,, p]. To find it, we start with L[U,, 2]
and apply Lemma II to get 8L[U.,, 2]/dz(r), which
we writeas 1 + A[U,, z]. By noting thatIn [1 4 A] =
A — 14® 4 ... we obtain an expansion of In
{6L[U,, 2]/2(r)} and by noting that 1/(1 + A) =
1 — A + A® — --. we obtain an expansion of
{8L[U,, 2)/62(r)} *. From this latter expression and
Lemma III we obtain both [8L/82(r)]”' and 2z(r)
{which is just p(r) [6L/82(r)]"'} expressed as func-
tionals of the U, and p. We use Lemma III back-
wards here, noting that the U,-face, p-vertex ex-
pressions for [6L/6z(r)]"* and 2(r) imply each other
and that Lemma III applied to both of them yields
our initial expression for {SL[U,, 2]/0z(r)}~ . Finally
we obtain In (8L/dz) written as W[U,, p] by sub-
stituting our expression for z(r) in terms of the U,
and p(r) into our expression for In {8L[U,, 2]/dz(r)}.
We use Lemma III to verify that the resulting
expression for W[U,, p] contains the correct com-
binatorial factors. The whole development is shown
schematically in Fig. 1. As indicated there, the final
step of obtaining the V, in terms of the U, by
comparing W[V,, p] and W[U,, p] is facilitated by

X which
>
a2 0lnz is p
Lema 6L[Vn,z] y . :
L[Vn,z:l H bz Lemma ITI lna- as WLV,,P
6LV, 2]
" Vp in
i terms
Lemma ‘II
terms I temme
£ V.
o 1In 61'[Un"]
Oz
Lema Lemma IIT 1n — a8 W[U ,p]

1T 5L[U ,2]

il 2] ——

1

—~ -1
il":_g&z_:l i z in terms of U, and O
Z
Lemma III:
~1

3

in terms of U, and p

Fia. 1. “Flow diagram” for Sec. II. Double bars areddisfvl;n l:ietween functionals that are equal, such as L[V, 2]
an 2y 2
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the use of Lemma II, since V, is simply the (n—1)th
functional derivative of W with respect to p, eval-
uated at p = 0.

No combinatorial factors beyond those that al-
ready appear as part of the symmetry numbers
arise in obtaining the graphical representation of
WI[V., o] [Eq. (A8) in Appendix]. The counting
problem that must be solved to get the representa-
tion of W([U.,, p] [Eq. (A7)] turns out to be trivial
and yields the extra factor of [ [ (—1)**7* (k. — 1)!
that appears in the final inversion rule. Details are
given in the Appendix.

We note that the functional L can be identified
with the logarithm of the grand partition function
of a classical system, p(r) with the one-particle dis-
tribution function, and z(r) with the fugacity times
exp {—external field/kT} where k is Boltzmann’s
constant and 7' is the absolute temperature. The
expression W[V, p] can then be identified with the
{external field/kT} minus 1/kT times the work
necessary to bring a particle from outside the system
to position r in terms of p(r) and the star functions,
V,. If the external field is zero, a single integration
with respect to the number density p yields the
number-density expansion of the equation of state.
If further, the only interparticle forces are pair
forces, then the star functions can easily be reex-
pressed in terms of Mayer’s f-function’ and the
resulting expansion reduces to the familiar p-vertex,
{-bond cluster expansion of the equation of state.
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APPENDIX. THE DETAILS OF THE SOLUTION
The functional L[U,, z] is defined as

L[U,, 2] = the sum of all distinct graphs each of
which consists of black z-vertices and a
Uy-face, n > 1, where U, = 1,

= f drz(r)U,(ry)
+ % d‘r‘l dr, 2(1‘1)3(7'2) Uz(ru rﬂ)

+ 1 [ T resenUstenyrar) + -+, 4D

t=]
A PR TY S

In illustrating the graphs in (Al) and in the ex-
pansions to follow we omit all labels designating
the functions to which the vertices and faces cor-
respond as well as the coordinates associated with
the white vertices. These functions and coordinates
will be obvious from the descriptions immediately
preceding the illustrations.

We shall first find W[V,, p]. We begin by inserting
into the right-hand side of (A1) the expression given
in (2.1) for the U, in terms of the V,, m < n. The
result is the following expression for L[V, 2].

bd L] + *--—0 +

If we differentiate (A2) with respect to 2(r) to get 8L/8z(r), we obtain, from Lemma II,

L[V,. s 2] [gra.pha consisting of black z-vertices and Va-faces. (A2)
- @ + .—.+L+A+...+%_q+
<4 the sum of all d.wtm:t ﬂalytecogm ( A3)

51‘/ 52(1‘) = [;;mple graphs co

beled r, at least one black z-vertex, and Va-faces

.1+'°/'+ L+/\+

A+

Two expressions immediately follow from (A3). First, by multiplying both sides of (A3) by z(r)

and using the definition p(r) =
p(r) =

gmp co!

2(r)8L/52(r) to identify the left-hand side of the result, we have

(r) + the sum of a.ll distinet simply connected simple
of a white s-vertex labeled r, at least

(A4)

ne black s-vertex, and Va-faces
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Second, applying Lemma I to Eq. (A4) we obtain
an expression for In {8I'[V,, 2]/ 82(r),:

STV, 2] -

In 2(r)

labeled r, at least one black z-vertex, and
Va-faces, such that the white vertex is not

|:The sum of all distinet
an articulation point

simply-con d
simple graphs consisting of a white l—vertex]

(A5)

We now apply Lemma ITI. We let the f(r) of that
lemma be p(r) given by Eq. (A4) and the G be
the maximal rooted irreducible subgraph of any
graph in the right-hand side of (A5). By maximal
rooted irreducible subgraph we mean the largest
subgraph of the graph that contains the white vertex
(the root) but does not contain any articulation
point. An arbitrary graph need not contain a unique
maximal irreducible subgraph, but the condition in
(A5), stating that the white vertex is not an articula-
tion point is enough to ensure the existence of such
a subgraph for every graph in (A5).

We observe that any graph on the right-hand side
of (A5) can be obtained from its maximal rooted
irreducible subgraph G by the replacement of the
black vertices of G by graphs in the expansion of p.
(The replacement is to be made in the manner
indicated in Lemma III.) Furthermore, only graphs
that can be obtained by such a replacement are
found in Eq. (A5). As a result, the right-hand side
of Eq. (A5) can be replaced by a sum of all distinct
maximal rooted irreducible subgraphs if all z-vertices
are replaced by p-vertices. This result can be written
as
WV, o] = [ it e bbsad

hs that consist of a:l
Va-face, n 2> 2

lack p-circles, and &

(A6)

Thus we have obtained In [6L/82(r)] as W[V., o,
a functional of V, and p.

We turn next to the task of finding WU, pl.
Qur claim is that

The weighted sum of all simply connected
sunple graphs that consist of one white 1-vertex

ed r, one or more black tP-verinces and
Uu-faces, n > 2. The weight of each graph is

W[U,, p] = H (—1)(k°_1)(ka — 1)'
1Sasn
where this factor has the same meaning as in
q. (2.2)

(A7)

The weight of each graph can be absorbed into
the definition of the graph if the ath vertex is
associated not with p(r,) but with w,p(r,), where

we = (—1)*Vk, — DI (AS)
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The label « here is not to be confused with the
labeling used in designating the vector associated
with each white vertex. Here « is used simply to
identify each circle, so that an articulation degree
can be associated with it. For uniformity, the o’s
of a graph will be enumerated always starting with
the white vertex, so that the w, for it will always
be denoted by w,. Otherwise, no particular ordering
will be assumed. Absorbing the weight of each circle
into the definition of the function associated with
the circle, we rewrite (A7) in the form in which
we shall actually obtain it:

thesumofn.llr" t simply ted si

wIiU _ fmpha that consist of one white wx-vertex

[ ny P] = beled r, one or more black (w,p)-vertices,
nd Us-faces, n 2> 2

(A9)

Our first step in proving (A7) is to apply Lemma IT
to the graphs of Eq. (Al). We obtain for §L/8z(r)
the characterization

8L [1 + the sum of all distinct graphs each of which

—_— msists of one white 1-vertex labeled r, (n — 1)
d2(r) black z-vertices, and a Ua-face, n

(A10)

Our next step is to obtain In {SL[U,, 2]/8z}. We
do this by letting the sum in Eq. (A10) be denoted
by A so that we can write

8L/sz(r) =1+ A. (A11)

Therefore

A AP

k
m g4 A

(=1

(A12)

We claim that the application of this identity
yields the prescription

e sum of all distinct simply ted simple
In _5_& - [‘g-Eaphs that consist of one white wi-vertex labeled r,:|

one or more black z-vertices, and Us-faces, n > 2
uut;:exthat the only articulation point is the white
ve

(A13)

In order to verify this, it is necessary only to
consider the genesis of the factor w, in (A13) since
the rest of the characterization of the sum follows
immediately from (A12) and the characterization
of A given by (Al1). Thus we can take (Al3) as
given if we consider w, to be still undetermined,
and our task is to evaluate w,.

Comparing (Al12) and (A13), we see that for a
given k, (—1)*"'4*/k is a sum of graphs, each of
whose white vertex is a w,-vertex which has % as
an articulation degree. Let us examine one such
graph, which we denote by T,. The k pieces that
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would separate if the white vertex were removed
define k subgraphs that share the same white vertex.
Among them, there will, in general, be n, identical
graphs having a symmetry number of ¢y, 7, identical
graphs having a symmetry number of ¢;, --+ , and
n, identical graphs having a symmetry number of o,.
Thus we can write & = 2 i<a<r Ra, and according
to our general rule of correspondence between graphs
and integrals, our typical graph T, stands for an
integral times (the symmetry number of T',)"* where
the integral has an integrand consisting of w, times
a product of z(r;)’s and U,(ry, -+ , r.)'s. If the
integral over the product of z’s and U,’s is denoted
as J we have I = w,J. We further note that the
symmetry number of I, can be writien in terms
of the ¢, and n,, 50

T = /e oD

On the other hand, 4 is itself a sum of graphs,
each of which represents an integral I times o3,
where o is the symmetry number of I;. Hence T,
is equal to (—1)*"'/k times a sum of identical terms,
every one of which is a product of graphs. Each
such product is a term of the form ][, [Z5/05). This
term can be re-expressed as J/[[; o5 or, changing
to an index thal sums over distinet graphs, as
J /Ha {¢%*). The question is: How many such
identical terms are there? The number of such terms
is the number of ways in which % objects can be
partitioned into » groups of which the first contains
n, objects, the second n, objects, etc., and hence
this number is simply the multinomial coefficient

k!

(A14)

—H———H Wl (Al5)
Thus we have
(—1Y'kl, wd
Pg = = A16
k I;I () I;I (%) IuI o5 (n.)] (A16)
or

wy = (—DkE = (1'% — D (A17)

We have verified Eq. {A13). Our next objective
is to find an expression for z in terms of U, and p.
This can be accomplished in two steps. The first
involves following exactly the same argument we
have just used to obtain (A13) from (A10). Instead
of looking at

GEORGE STELL

(_ l)k—lAk
2 k

k21

H

ik~
however, we look at
ki
oz
We find that

1 - the sum of all distinct simply con~

F1 7 R o < oot rolcr iy e i
% = ' ) . (A18)
Since [6L/8z]7" equals 2(r)/p(r), multiplying both
sides of (3.18) by p(r) gives us an expression for z(r):

= 2. (—1)*4"

&20

more black z-vertices and Un-faces, n > 2,
such that the only articulation point is the
white vertex

o(r) -+ the sum of all di simply ted simple
graphs that consist of one white ([{ —1)*1&1/]p)-vertex

z(r) == | Iabeled r, one or more black z-vertices, and Unfaces,
n_ 2 2, such that the only sarticulation point is a
white vertex

(A19)

We can now replace the z’s that appear in the
sum of (A18) by the right-hand side of (A19). The
resulting expression still contains 2's, since the right-
hand side of (A19) does. They can be replaced by
the right-hand side of (A19) again, etc. Taking the
limit of this procedure, we can eliminate the 2's that
oceur in (A18) in favor of p's. The result is

-1 1 - the sum of sll distinet simply con-
[Z]" = [l St g |

ack w,p-vertices, and Un-faces, n > 2.

To verify that (A20) is indeed the limiting result
of our procedure of successive replacement, we can
use Lemma III, taking as f(r) the z(r) obtained by
multiplying (A20) through by (7). We identify @
with the maximal rooted irreducible subgraph of any
graph in the right-hand side of (A20) and the &,, &,,
ete. with typical graphs in (A20) having the same
maximal rooted irreducible subgraph G. The lemma
establishes that (A20) reduces to (A18) when only
the graphs free of black articulation points are
retained and all black vertices are made z-vertices.

For convenience, we exhibit Eq. (A20) after it is
multiplied through by p, since the result is the
desired expression for z in terms of p and the U,:

o(r) + the sum of all distinet simply ted simple
) = | Bool BEPSL R TR

(A21)

We can now use (A21) to eliminate 2z from the
expression for In (o/2) given by (A13). The result
is (A9).
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Any matrix describing a finite proper orthochronous Lorentz transformation of the null tetrad
in Minkowski space may be written as a polynomial of the second order in skew-symmetric tensors.
From a geometrical point of view these tensors describe two-dimensional planes which are mapped

by the Lorentz transformation into themselves.

1. INTRODUCTION

HE infinitesimal proper orthochronous Lorentz
transformation, is described as is well known,
by the matrix'

Lf =38 +of, .1
where wag = 75,0, " are infinitesmial constants, skew-
symmetric in their indices (w,s = —wga). The six

arbitrary coeflicients w,; are related to the six pa-
rameters of the infinitesimal Lorentz group. The
very elementary fact expressed by (1.1) suggests
that the matrices of the finite proper orthochronous
group itself can be written in the form of a series’

LP =5+ wl+ Z a(.‘)wa)"wmh et (12)
i=1

where «(;, are some numerical coefficients. Equa-
tion (1.1) might then be considered as the linear
approximation of (1.2). Let us observe that if (1.2)
is true, there will always be a simplification possible.
As higher powers of any matrix in a four-dimensional
space can always be reduced to powers not exceeding
the fourth, due to its Hamilton-Cayley equation,
the series (1.2) should really be a polynomial in
wqp Of order not higher than fourth. This note aims
to show that any finite proper orthochronous Lorentz
transformation may indeed be represented in a poly-
nomial form, and the geometrical properties of the
skew-symmetric tensors involved are exhibited.

* Research supported by the Aerospace Research Labora~
tories of the Office of Aerospace Research, U. 8. Air Force.

1 On leave of absence from Institute of Physics, Polish
Academy of Sciences, Warsaw, Poland. .

1 We consider Minkowski space with coordinates z= and a
metric tensor 7,5 (with signature —2). All tensor indices are
raised or lowereda by means of this tensor. 3, is the Kronecker
tensor. For any two vectors a., bs, we define a, by =
}(a,,b + apba); a[,b,g; = ‘}(aa_bp had agb,,). L.

2 From the theory of continuous groups it is well known
that this series is an exponential in the generator w,g. This
information is, however, irrelevant for the considerations
presented here.

2. LORENTZ TRANSFORMATION IN TERMS
OF NULIL TETRADS

In this section the null-tetrad formalism will be
briefly reviewed.®

Let us assume that in Minkowski space an ortho-
normal tetrad of vectors ,* is given (afy -+ M\
tensor indices; uymp --- -tetrad indices). Then we
have

2.1)

Following the standard procedure we introduce the
basic vectors of a null tetrad

k., = (1/\/2)(06':1 + 1ea);
la = (1/\/2_)(0601 - 1ea)7
ta = (1/‘/2-)(260: -1 3ea)'

The vectors k. and I, are real, and {, is complex;
we denote its complex conjugate by I.. The first of
relations (2.1) then becomes

kol* = —t°1, = 1,

a ¥y
W€ Ca = Ny, 7" #arlg = Nag-

2.2)

U

2.3)
kL k™ = 1,0% = t,01° = t.k* = (., =0,
and the second
Nap = 2kbcalpy — tialnl 2.4)

We now consider linear transformations of null-
tetrad basic vectors which leave the form (2.4) of
N.p invariant [or equivalently, which preserve all
the scalar products (2.3), and their complex con-
jugates], and which do not change the direction of
one of the real null vectors, say of k,. Besides that
we demand that our transformations do not reverse
the sense of time, and do not lead to space reflections.

[The Lorentz transformation is defined as an iso-

8 Null tetrads have recently been widely used in general
relativity. A more detailed description_of this formalism
may be found, e. g., in R. K. Sachs, Proc. Roy. Soc. (London)
264, 309 (1961) and in the literature quoted there.
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metry in Minkowski space (n%; = 75.5). Thus the
demanded condition of the invariance of the direc-
tion of k. could be regarded as an additional restrie-
tion. It is, however, well known that every proper
orthochronous Lorentz transformation leaves at least
one null-direction invariant. It may also be shown
directly as follows:

Every future-pointing null vector can be written
in the form: k* = 7, k' = rsingsind®, k> = rcos ¢
gind, k* = rcosd; where 0 < 7 < «, 0 < ¢ < 2m,
0 < ¢ < =. Hence, the null directions are deter-
mined by the angles ¢, & on the unit sphere. The
proper orthochronous Lorentz transformation maps
the future light cone onto itself, and thus generates
a continuous mapping of this sphere onto itself (which
does not change the orientation of closed curves).
From the well-known Brouwer’s fixed-point theorem
there is always at least one point (p, &) that re-
mains fixed under such a mapping, and the null
direction which corresponds to this point is left
invariant by the Lorentz transformation.]

It may be easily shown that these conditions
define the null-tetrad up to the transformations

kL, = e'k.,,

l:, = e-‘b(la + 7'7ka -

t, = e(te — Tka)-
Here the parameters ¢ and ¢ are real numbers, and
v is complex. For v = 0 (2.5) describes a special
Lorentz transformation in the plane defined by k.

and I, (i.e., in the plane (¢°, 1¢”) and a rotation in
the plane defined by {, and {, (i.e., in the plane

Yla — 'yza): (25)

267, 3e7):
kl, = e'k,,
U, =e*l,, 2.6)
th, =ée't,.
For ¢ = = 0, however, transformation (2.5)
goes over mto a null rotation* about the vector
kY = k.,
W= l. +v¥ka — vta — 7o, @.7)
i = t, — Yka-
The general transformation (2.5) is a product of

(2.6) and (2.7); this product is not commutative.

¢+ Null rotations have been discussed by T. Shibata, J. Sci.
Hiroshima Univ. 19, 101 (1951) (and in_his earlier’ Ea.pers
uoted there), and were used in general relativity
%ondl, F. E. Pn‘am, and I. Robmson, Proc. Roy.
London) A251 519 (1959); see also R. Sachs, f
and H. M Schwa.rtz, . J. Phys. 31, 864 (1963)
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The matrices representing (2.6) and (2.7) may
be very easily expressed as dyadic products of the
vectors k,, 1., t,. In the case of (2.6) we look for a
matrix L,* which would allow us to write (2.6) in
the form k! = L,’ks, etc. Obviously

LS = kP UK — 128 — 84
= e’k + eIk — et 1* — e 2.8)
Similarly the transformation (2.7) is described by
a matrix
Naﬁ = klalll’ + l’;kﬂ — tl;iﬁ — ll‘:tﬂ
= 8. + y(k.t’ — k)
+ ')7(kczﬂ9 - lakﬁ) + ’Y'7k¢k5- (2'9)

Formulas (2.8) and (2.9) may be considered as
a kind of canonical form of the Lorentz matrices
in Minkowski space, analogous to the spectral de-
composition of a matrix in Euclidean space.

—iep 1.

3. DECOMPOSITION OF LORENTZ
TRANSFORMATION INTO SKEW-SYMMETRIC
TENSORS

The matrix N,? (2.9) for the null transformation
may be written as

Nap= 8aB+F¢ﬁ+F’aﬂ+Fa)‘F’)‘ﬂ
= (na)\ + Fa)‘)(ﬂ)‘ﬁ + F)‘ﬂ)! (3'1)
where
Faﬂ = 2'yk[,xtg] (3.2)

is a null antisymmetric tensor (i.e., F,.F** = 0).
It is immaterial in definition (3.2) which of the null-
tetrads (2.7) (ka, 1o, te Or k’2, U2, '1) was used. If v
is an infinitesmial quantity, (3.1) goes over into (1.1)
with Weg = Fup -+ Fap. In terms of Wep (3.1) may
also be written as

NS = 8.2 4+ 0. + w0’ 3.3

Thus Egs. (3.1) or (3.3) are just expressions of the
form (2.2) for null rotations.

A similar decomposition may be easily obtained
for the matrix L,? (2.8). Let us observe that the
vectors k, and I, in (2.8) may be replaced, without
affecting L.°, by any other pair of transformed null
vectors k. = €’k,, 1, = e *1,. All these null vectors
span the same bivector f.5 = 2k .ls;. Thus we may
try to represent L,z in terms of f.s and its dual f*, =
2’Lt[azp]

$In a null tetrad the Levi-Civita tensor density eapys
equals 4lik(,lgf,15. It is & real tensor, hence f*,4 is also real.
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Since our bivectors fullfil the relations®
S A PO = — 2, (3.4)
all odd powers in f.g and f*; in an expansion like (1.2)
can be reduced to f.s and its dual f%, and all even

powers to f,'f,,‘g and f%7f*%. Thus without any loss
of generality we may replace (1.2) by

Lap = 6(:’ + alfaﬂ + aﬂ’a?}cvs
+ 818+ BSH (35)

The vectors k., and 1, are eigenvectors of f.s
belonging respectively to eigenvalues =1, and i,
and I, are eigenvectors of f*; with corresponding
eigenvalues 4. Thus

LSk = e'ky = (1 + a1 + aka,
LPly=¢ Ly =(1— a + a)la,
LSty = €'%t, = (1 — iy — Bo)ta,
LSt =e*l, = (1 + 8, — Bo)la.
Using (2.3) we obtain
a; = ginh ¢, oy =
B =

cosh ¢ — 1,

1~ coseg,

(3.6)

Il

—sin @ B

and
L = 8, + sinh ¢ f.” + (cosh ¢ — 1)f,"f,°
—sing 2 + (1 — cos )f*"fA*.  (3.7)

This formula’ represents a decomposition of the
Lorentz matrix L,® in terms of a skew-symmetric
tensor f.”.

4. CLASSIFICATION OF LORENTZ MATRICES

Formulas (3.3) and (3.7) allow us to write the
Lorentz matrix L4, if we know the “angles” ¢ and
¢, and the planes which are mapped by the trans-
formation into themselves. (These planes are here
described by simple bivectors of any pair of ortho-
normal vectors in them.)

Now we ask the opposite question: How can we
find these invariant characteristics, if we are only
given the components of a finite Lorentz matrix L .47

Let us therefore assume that a general, proper
orthochronous Lorentz matrix L is given. Its skew-
symmetric part w,s = %L.s has two invariants

¢ These relations may be shown either directly, using the
explicit form of f,s and f*,5 or as consequences of the
Hamilton-Cayley equation for antisymmetric matrices f,
and f*,g; see, e.g., J. Plebanski, Bull Acad. Polon. Sci. ClL IIIf
9, 587 (1961).

7 Equation (3.7) may also be written as

Lo# = sinh ¢ fo# + cosh ¢ fu?fy# — sine f*ag — cos e fa*1fy".
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I = wepw®® and I, = wae**”. If both of them differ
from zero, our Lorentz transformation is of the type
(38.7), i.e., it is a special Lorentz transformation and
a rotation, We may see this easily if we remember
that any skew-symmetric tensor w.z; (for which
I, # 0 and I, # 0) may be represented as a duality
rotation of two mutually dual simple bivectors.® To
show it, it is sufficient to take

fas = wap COSa + w¥ssina

and define « as tan 2a = I,/I,. Then {,; is simple
(fasf**® = 0), and w,; is a linear combination of f,s
and f*,4:

wag = fup COS @ — figsin e, 4.1)

and the coefficients sin « and cos « in this decomposi-
tion are defined in terms of I; and 7,. If we normalize
fap S0 that f.if** = —2 and compare (4.1) and the
skew-symmetric part of (3.7), we can find the pa-
rameters ¥ and ¢ of our Lorentz transformation in
terms of I, and I,. The simple bivectors f,s and ¥,
define then, respectively, two 2-dimensional, com-
pletely orthogonal planes in which the special Lorentz
transformation characterized by ¥ and the rotation
by an angle ¢ are performed.

In the case I, = 0 and I, 5 0, w,s is already
simple. Then we have to distinguish two cases: I, > 0
and I, < 0. In the first case L,; represents a pure
rotation and in the second a special Lorentz trans-
formation.

If both I, = I, = 0, the transformation L.z is a
Lorentz null rotation.

From this classification we see that any proper
orthochronous Lorentz transformation, generated by
askew-symmetric fensor w.s; always can be written
in either the form (3.7) or (3.3), i.e., it is a trans-
formation (2.5). Thus it again demonstrates that
any proper orthochronous Lorentz transformation
leaves at least one null direction invariant. It is
not difficult to see that this direction is one of the
null eigendirections of the generator wa.s.
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The problem of determining the number of times, b(I N L S), a given term occurs in an atomic
configuration of the form (nl)¥ is considered by the methods of group theory. The b are shown to be
related to the classical problem of partitioning numbers. Several expressions relating b to other,
simpler partitions are obtained, which result in a recursion relationship for the b. A table for b(4¢ N L §)
is included to complement existing tables for the range 1 < ! < 3, which are found in several places in

the literature.

L INTRODUCTION

'HE restriction of atomic wavefunctions to those
that are antisymmetric on the interchange of any
two electrons limits the possible Russell-Saunders
(LS) states for a given atomic configuration. The
limitation is especially pronounced for configurations
of the form (nl)?, i.e., for equivalent electrons, be-
cause the full burden of antisymmetrization must
be absorbed by the angular momentum variables—
the only way in which the single-electron states may
differ in these configurations. For two equivalent
electrons, the allowed terms are those for which
L + 8 = even, and each such term is found to
occur just once. For an arbitrary number of equiv-
alent electrons, the manner in which antisymmetriza-
tion manifests itself eannot, however, be so simply
expressed. One finds that the number of times,
b(I N L 8) [hereafter written b(INLS) for conciseness],
a given LS term appears increases rapidly as [ (the
arbital angular momentum of each electron) and N
(the number of electrons) increase, and moreover,
for fixed [, N, and 8, the number of terms as L
varies, fluctuates irregularly. The b(INLS), on the
other hand, are not dependent on the principal
quantum number n, provided = is greater than .
The problem of determining the numbers b(INLS)
dates back to Breit' in 1926. The following year,
Russell’ and Gibbs, Wilber, and White® simultan-
eously published results extending Breit’s algorithm
to obtain the b for all possible configurations in-
volving p, d, and f electrons. The method developed
by Breit relies on a manipulation of the angular
momentum projections (the so-called “magnetic
quantum numbers”) of single electron states and
is very laborious in spite of the improvements by

! G. Breit, Phys. Rev. 28, 334 (1926).

2 H. N. Russell, Phys. Rev. 29, 782 (1927).

? R. C. Gibbs, D. T. Wilber, and H. E. White, Phys. Rev.
29, 790 (1927).

the other authors. A good summary of the method
is given by White.*

Recently, Curl and Kilpatrick® treated the same
problem by the more elegant methods of group
theory. They obtained a generating function Js(x)
that generates the desired quantities in the form

Js@) = >, bINLS)@" — z~=7%). 1

The contribution of Curl and Kilpatrick represents
a significant improvement over Breit’s method for
obtaining the b even though, in practice, the process
for finding a given b by expanding Js(z) in powers
of z may still involve much labor.

A consideration of the known methods for de-
termining the b indicates that these quantities are
related to the classical problem of partitioning
numbers, i.e., the problem of determining the number
of unique ways an integer can be expressed as a
summation over a set of other integers restricted
by certain conditions. The method of Breit, par-
ticularly, gives a strong indication of this relation-
ship. One may, therefore, reasonably expect the b
to exhibit properties generally shared by the various
partitions that have been studied.® Among these
properties are (1) each partition is associated with
a relatively simple generating function, (2) each
satisfies a recursion relationship, and (3) there exist
interconnecting formulas relating the various parti-
tions. Only one of these properties, the first, has
been found previously in connection with the b’s.
Owing to the facility with which tables for a given
partition can be obtained using the recursion rela-

4 H. E. White, Introduction to Atomic Specira (McGraw-
Hill Book Company, Inc., New York, 1934), 1st ed., pp. 235,
203, and 437.

(192 (% F. Curl, Jr., and J. E. Kilpatrick, Am. J. Phys. 28, 357
8 H. Gupta, Royal Society Mathematical Tables, Partitions
4 (Cambridge University Press, Cambridge, England, 1958).
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Tasrg I. Values for 5(4NLS) in therange 2 < N < 5,0 < L,and 0 < 8.
All b for arguments in this range not given in the table are zero.

N=2 N=3 N=4 N=5

L S=1 8=0 S=% 8=% 8=2 8=1 8=0 S=5/2 8=3/2 S§=1/2
0 0 1 0 0 1 0 3 1 1 3
1 1 0 1 1 0 4 0 0 4 5
2 0 1 0 2 2 3 5 2 6 10
3 1 0 2 2 1 6 2 1 8 11
4 0 1 1 3 2 5 6 2 9 15
5 1 0 1 3 1 7 3 1 9 14
6 0 1 1 2 2 5 6 2 9 15
7 1 0 1 2 1 6 3 1 8 13
8 0 1 0 2 1 4 5 1 7 13
9 1 1 0 4 2 0 6 10
10 0 1 1 2 3 1 4 9
11 0 1 0 2 1 0 3 6
12 0 1 2 0 2 5
13 0 1 0 0 1 3
14 0 0 1 0 1 2
15 0 0 1
16 0 0 1

tionship it satisfies, it is desirable to find such a
relationship for b.

This paper reports the results of a successful in-
vestigation towards this end. In addition to obtaining
a recursion relationship for the b, several new form-
ulas are obtained relating this quantity to other,
simpler partitions. Finally, the generating function
of Curl and Kilpatrick and a new generating function
related to it are derived for completeness.

The recursion relationship for b, given by (22)
in See. III of this paper, lends itself well to computer
calculations. A table for b(INLS) for all values of
N, L, and 8, and for [ in the range 1 < I < 6 was
obtained in this manner and is available upon

request.” The values for I = 4 are included in this
paper in Tables I, I1, and III to complement existing
tables found in the literature.>”®

II. A REDUCIBLE REPRESENTATION

Consider the finite-dimensional linear vector space
T’ comprising the antisymmetric wavefunctions of N
equivalent electrons, each with orbital angular mo-
mentum . This space is invariant with respect to
the three-dimensional rotation operators in coor-
dinate space, B; = exp (—n-L#), and in spin space,
Rs = exp (—n’+S¢), where L = > ¥ 1, and § =
> ¥ s,. As a result of this invariance, T is a carrier
of a representation for the product group formed

Tasrk II. Values for 5(4NLS) in therange 6 < N < 7,0 < L,and 0 < 8.
All b for arguments in this range not given in the table are zero.

N=¢6 N=7
L 8§=3 8=2 8=1 8=0 8§=7/2 8=5/2 8=3/2 8=1/2
0 0 2 1 7 0 1 2 5
1 1 3 13 3 1 3 13 15
2 0 8 13 13 0 5 16 24
3 2 7 23 11 1 6 25 31
4 1 10 21 19 0 7 25 37
5 1 9 28 13 1 7 30 39
6 1 10 23 21 0 7 27 40
7 1 8 26 14 1 6 28 39
8 0 8 20 17 0 5 23 36
9 1 5 20 12 0 4 22 32
10 0 5 14 13 0 3 16 27
11 0 3 13 7 0 2 14 22
12 0 2 8 9 0 1 9 17
13 0 1 7 4 0 1 7 13
14 0 1 3 4 0 0 4 9
15 0 0 3 2 0 0 3 6
16 0 0 1 2 0 0 1 4
17 0 0 1 0 0 0 1 2
18 0 0 0 1 0 0 0 1
19 0 0 0 1

7 N. Karayianis and Arthur Hausner, HDL Report No. R-RCB-64-1, June 1964.
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Tasie II1. Values for 5(4NLS) in therange 8 < N < 9,0 < L,and 0 £ 8.
All b for arguments in this range not given in the table are zero.

N=28 N=9
S=4 8=3 8=2 S8§=1 8=0 8=9/2 8=7/2 8=5/2 8=3/2 8=1/2
0 0 0 5 3 10 1 0 3 6 8
1 0 2 7 23 7 0 1 3 16 19
2 0 2 16 27 24 0 1 9 24 35
3 0 4 16 43 20 0 1 8 34 40
4 1 3 22 43 34 0 1 12 38 52
5 0 4 20 53 28 0 1 10 40 54
6 0 3 23 48 37 0 1 12 42 56
7 0 3 19 52 28 0 1 9 39 53
8 0 2 19 43 34 0 1 9 35 53
9 0 2 14 42 24 0 0 6 32 44
10 0 1 13 32 26 0 0 6 26 40
11 0 1 8 29 17 0 0 3 20 32
12 0 0 7 20 18 0 0 3 16 26
13 0 0 4 17 10 0 0 1 11 19
14 0 0 3 10 10 0 0 1 7 15
15 0 0 1 8 5 0 0 0 5 9
16 0 0 1 4 5 0 0 0 3 7
17 0 0 0 3 2 0 0 0 1 4
18 0 0 0 1 2 0 0 0 1 2
19 0 0 0 1 0 0 0 0 0 1
20 0 0 0 0 1 0 0 0 0 1

by the operators R Rg. The reduction of this rep-
resentation into its irreducible components provides
the number of states, b(INLS), which belong si-
multaneously to the (2L -+ 1)-dimensional irre-
ducible representation of the rotation group in
coordinate space and the (28 -+ 1)-dimensional
irreducible representation of the rotation group in
spin space.

Let the matrix representation for R Es in terms
of some basis in T be given by D(R.Rs). Further,
let U represent the unitary transformation that
effects the reduction of D as follows,

UDR.R)U™ = D b(INL'S)D**'*'(R,)
L'S’

X D*"'(Rs), (2

where the D matrices on the right-hand side are
irreducible representations of the respective three-
dimensional rotation groups. Taking traces of both
sides, one has

Tr [D(R.Rs)] = szs:' BUNL' 8™ T (Bo)x™ ' (Bs),
@

where the x are characters of the respective rotations
in the given irreducible representations.

To evaluate (3), it is sufficient to choose the rota-
tions

RL = e—iL.ﬂ’ RS - e-—s‘S.tp’ (4)

for which the characters are given by the well-known
expressions

X *(R) = sin (L' + 1o/sin 30,
X" *'(®s) = sin (S + Po/sin Bo.

The trace of D(B.Rs) may be evaluated by choosing
any convenient orthonormal basis in I'. We choose
the set of determinantal wavefunctions u, that are
known to span I' and to be diagonal in L, and S,.
The u, are antisymmetrized product wavefunctions
of the N single-electron states. A typical matrix
element for R R in this basis is

u:RLR,gu)\ = Dy)‘(e—iluﬂe—is:w)

—iM 0 —iM
= 5,)\6 L(l')e iMg(ne

(5)

»  (6)

where M.(») = D% m; and Ms(») = >V u;, and
the m; and u; are respectively the individual z pro-
jections of the orbital angular momentum and spin
for the single-electron states. The trace of D(R.Rg)
is then given by

Tr [D(R.R5)] = Mzﬂ)“ AM M) Mile= M52 (7)

where A (MM g) represents the number of determi-
nantal wavefunctions for a given M, and M. Equa-
ting (38) and (7), and substituting the character
values given by (5), one obtains

2. bUNL'S")sin (L’ + $)0sin (8" + 3o

L'8’

= 3 AMMg)sin 36 sin doe~ MM 0w,

MLiMs

®)

The summation on the left is restricted to L’ > 0,
S’ > 0, whereas M, and M4 assume positive and
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negative values. Owing to the fact A is even in
both M and M s, operating on (8) with

(7'_)-2 f; r do-/; ) d(p sin (L + %)0 sin (S + %)‘0 (9)

gives the result

baNLS) = T (—)“"(D(i)A(L + 0,8+ o)
(10

Considering the original definition of A (M M)
given by (7), this function is readily seen to be a
partition. In particular, it represents the number
of unique ways in which N integers m;, restricted
by —1 £ m; £ I, can add to give M, and the
number of ways N related quantities u; = I can
add to give M with the added restriction that the
simultaneous equalities m; = m;, u; = u; are dis-
allowed for all ¢ = j. To relate A to a simpler
partition from which a recursion relationship can
be obtained, we separate the sets {m;, p,;} according
to the number of pairs of m, that are equal (three or
more m; may not be equal).

A m> e >my

The number of states for each given set of m;
satisfying these conditions is the number of unique
ways the u; can be distributed consistent with
> wi = Mg, which is

(o 43
IN + M,

To obtain the total number of states in this category,
(11) must be multiplied by the number of unique
sets of m; which satisfy the conditions above, and
whose sum is M ;. This number is represented by

E 5(2 my My). 12)

my>c>my

a1

B.m=m# {m3> e >mN}

For a given set of m; satisfying these conditions,
one spin-up and one spin-down are necessarily asso-
ciated with m, and m,, hence the number of states
for each given set of m, is

()
IN -1+ M

The total number of states of this kind is therefore
the product of (13) with

(13)

B(E m;, ML).

mimmamE{ms>ee>my}

(14)

1207

Clm=m>m=m> o0 > My = my,}
# {Myper > oo+ > my}

For this general case, the total number of states is

( N-—2 )Za(zm.-,ML),
%N—p+M,s {p}

where {p} represents the lengthy restriction on the
m; given above by C.

The partition A is equal to the summation over
all the possibilities for p which is

IN~IM3| N— 2
3 ( p
70 %N—'p‘l'Ms

(5)

AM M) = >F(ZNMLP);

(16)
where F is the partition defined for arbitrary L by,
FONIp) = 3 o5 mi, L). 7

This method for expressing A in terms of a new
partition F is by no means unique. For example,
a given set {m;, u:} can be split into two sets of m,,
those belonging to u; = -+3 and those belonging
to u; = —3%. The physical requirements on the m;
now are that no two m, in the same set are equal,
and no reference is made to the equality or inequality
of m,; in different sets. A consideration of 4 from
this point of view leads to a new expression for A
that can be obtained directly, however this expres-
sion will be obtained indirectly but more profitably
later in the paper.

IOI. THE RECURSION RELATIONSHIP

The partition F(INLp) defined by (17) may be
defined alternatively as the number of ways one can
choose N — p integers m/ with the properties that
my > -0 > mh_, —1 < m! < I, and that p of
these integers are doubled when performing the
summation to give L. When viewed in this manner,
F readily can be related to itself through a recursion
formula. Consider the sets {m}} that satisfy the
conditions for belonging to F(INLp). These sets can
be separated into four categories determined by the
two independent possibilities: m{ equals or does not
equal !, and mj_, equals or does not equal —I.
By this explicit consideration of the m) that can
attain the extremum values =I, the number of sets
of m! in each category can be related to F of the
form F(I—1 N’ L’ p’). The results are

m{ # 1, mh_, # —1: F(I-1N Lvp), (18)
m, =1, mh-, % —1: FI-1N—-1L-1p)
+ F(l—1N—2 L—2lp—1), (19)
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m{ #l, mh, = —1: Fl-1N—1L+Ip)

+ Fi—1N—2L+2lp—1), (20)
m{ =1, mh,=—1: F(l—1N—-2Lp)

+ F(I—1 N—3 L—lp—1)

+ F(—1N—3 L+lp—1)

+ P(I—1 N—4 L p—2). @1)

The quantity F(INLp) is therefore equal to the
summation of the nine terms in (18) through (21),
since there are no other possibilities for m{ and m}_,.
The recursion relationship for b is obtained by
relating F to b through (10) and (16), and using the
above recursion formula for F. The result can be
expressed in the following symmetric form:

b(INLS)

E II ( )b[l—l, N—=2—N—N+N+N,

Ad].
(22)

The physically significant values for b are gen-
erated by this recursion formula starting with the
following boundary conditions for I = 0,

L+l()\x")\2+)\3_)‘4); S + ‘%(—)\1"')\2"‘)\3_

b(0000) = 1, b(010%) = (23)

and the symmetries
bIN —L 8) = —b(IN L-1 8), 24)
BU(NL —S8)=—b(INLS-1), (25)
bUINLS) = b(l 2QI+1)—N L 8), (26)

which can be obtained from (10). It can be further
gshown that the symmetries will be propagated to
all b by the recursion relationship once incorporated
into the boundary conditions. Consequently, it is
convenient to combine the set of conditions (23)
through (26) into the following compaect form:

b[0 a+8 — 3(a—p)]

- (—)*(;) X -y ( )(a + g>(ﬂ ! .f)‘

Expressions (22) and (27) are sufficient to generate
all the physically significant b and to ensure the
symmetry conditions.

By repeated application of the recursion relation-
ship (22), one can obtain a general solution for
b(INLS) in terms of the boundary values b6(ON’L’S’).
If, then, the solution is specialized to the b(ON’L’S’)
given by (27), a new, symmetric expression for b

@7
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will result which can be recognized as the partition
described at the end of Sec. II.

To simplify the calculation, it is convenient first
to define two functions, B¥(z) and g5(u) as follows:

110 +w) = 3 By 9)
- Tt @

The difference equations satisfied by these functions
are, respectively,

BX(z) = B 7'(z) + «*Bi-i(z) (30)
and

) = gv () + groi(w), (31)

which have the following particular solutions satis-
fying (28) and (29):

Biz) = z"*Y fI -2 -2 (32
and
B = 25" (S @)
with
o(z) =1 (34)
and
go(w) = 8,0 (35)

The function g5(u) has, in addition, the following
properties that are useful for this problem, and which
are easily derived from (29):

o) = g\ — ), (36)
9w) = ginaGh(e + 1) — &), 37

The iterated application of the recursion relation-
ship (22) results in the expression

bINLS)
Z I @30, N—2—X\—N+NsFNs,

Niué i

L4+ ﬂl"'ﬂz‘l‘#s"'m, S+ 7(—>\1+)\2+>\3—>\4)],
(38)

where the temporary designation g(z) has been given
to the expression

9@ = m_Z._:m 5(12 Aty >\4)5(Z (U+1—=Nes, 1)

xII() e
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Expressing the Kronecker deltas in (39) by appro-
priate contour integrals, one obtains

g(z) = (2m)™* 95 dy fﬁ dz y g

X ﬁ 1 + yxz"), (40)

ym(

which, from (29), is

90@) = gi?l(m - ).

The boundary conditions given by (27) can be
enforced in the general solution (38) by appropriate
Kronecker deltas to give the following special
solution:

bUNLS) = 3 <—><i)(;ls)(i><i)
X 2 I oG =)

LY 2 ]

(41)

X 0GN+8S+o—1—a—A+X;, 0)
X 6(']24N—S_0'—l_ﬁ—)\2+)\4, O)
X 5(L+)\+.U1—ﬂ2+ﬂ3"‘ﬂ4; 0)-

Owing to the restriction on the arguments of the g,
the Kronecker deltas together with these functions
can be expressed as three contour integrals in the
manner of (40). One obtains the following result:

bINLS) = T (—)“"(i)(i)(%ri)“"

X 55 dzx 95 dy ¢ de g1

X y§N+S+U—I—ZZ§N—S—¢—l—2(1 + y)(l _I_ z)

(42)

1-1

X I=IO (1 + y—lxv+1)(1 + yxr+1)

X A 42771 + 2277, (43)

where the summations over a and 8 have introduced
the factors y™'(1 + y) 2”'(1 4 2). These are just
the factors required to combine the pi products in-
volving y and z separately to obtain

21

@™ 11 A + w™'a)(A + 22'z™). (44)

vy=0

The contours are then evaluated using (29), and

the arguments rearranged according to (36) and (37)
to obtain finally,
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savzs) = E 1))
X ; Givessegiv-s—o(NIH+L4N—p).  (45)

Considering the definition of ¢ given by (33), and
the alternative method for expressing A according
to the discussion at the end of Sec. II, it is clear
that the summation over u in (45) is related to A by

A(MLMS) = Z g§IIV+Mx(F)gZIIV-Ms(Nl+ML_I‘)-
(46)

The somewhat lengthy method employed in the
derivation of (45) clarifies the method of obtaining
a generating function for the b. By operating on
(45) with >_, z* and letting L = ' — Nl — X + &
on the right-hand side, then according to (28) and
(29), one has

2 bONLSR" = % (—)“"(;)C)

X &V B s v o(@)Bib-s-o(2). 47

The right-hand side of (47) is the generating function
of Curl and Kilpatrick, where the explicit values
for the B are given by (32).

A more compact generating function is obtained
by introducing two new variables by operating on
(47) with Y_ys ¥+ 52**~5. Then we obtain

L; blatB L 3a—B)le"y™d = 1 — z7)(1 — 2y™)

X TI 0 + y)t + 20, (48

y==1
which also can be deduced directly from (43).

With this result, the aims of this paper have been
fulfilled. The recursion relationship for the b given
by (22) has been most useful for obtaining the values
of b in the range 1 < [ < 6, and these are available
on request.” In Tables I, II, and III of this paper
the values for I = 4 are included to supplement
existing tables for 1 < I < 3 that appear in several
places in the literature.
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The trace of a positive bounded operator in s Hilbert space is defined and shown to be independent
of the basis used in the definition. The trace of the product W4 is defined for bounded 4 and positive
bounded W with unit trace and is also shown to be basis-invariant. An integral representation is
derived and used to define Tr(WA) for unbounded A. Linearity, isotony, and continuity with respect
to uniform covergence are proved for Tr(W.4) as a function of (bounded) A. Several formulas used
in statistical mechanics are derived, and it is proved that if A and B are commuting positive operators,
then Tr(W(A + B)) = Tr(WA) + Tr(WB). A counter example is given which shows that the
commonly uged definition of Tr(WA) in terms of an orthonormal basis is not invariant under permuta-
tion of the basis vectors even in the case of a very simple unbounded operator A.

An expectation-value function M which associates the expectation value M(A) to the operator 4
is assumed given and subject to certain restrictions. For bounded operators, these include positivity,
normalization, additivity, and a condition which may be considered as a requirement of regularity
for the probability function induced by M. Modifications of these requirements are imposed for
unbounded operators, and von Neumann’s statistical formula is proved: there is a unique bounded
positive operator W with unit trace for which M{A4) = Tr(WA). The requirements placed on M are

AUGUST 1965

weaker than those of von Neumann, and are in fact satisfied by Tr(WA) as a function of A.

1. INTRODUCTION

N the quantum theory, the operators in infinite-
dimensional spaces whose traces are of interest
are usually of the form WA where W is a positive
bounded operator of unit trace and A is a (possibly
unbounded) self-adjoint operator corresponding to
a dynamical variable. Because of this and the ex-
tremely pathological character of Tr (4) as compared
to Tr (WA) as a function of 4, the concept of Tr (4)
is treated rather briefly and attention is concen-
trated on Tr (WA). The treatment is valid for un-
bounded self-adjoint operators; and expressions such
as AWy, which restrict the region of validity of
the usual treatments to bounded operators, do not
appear except when W is a projector commuting
with A. In this case AWy = WAy has meaning
if ¥ € dom (4). It is extremely important to be
able to discuss unbounded operators, since many
of the commonly used operators (position, momen-
tum, and energy operators) are unbounded, and
statistical mechanics would be impossible if the
Hamiltonian of a system were bounded unless the
Hilbert space were finite dimensional. With the ex-
ception of a collection of spacially fixed particles
with spins, however, most interesting physical sys-
tems are associated with infinite-dimensional spaces.
Although the definition of Tr (WA) for bounded
A is a natural extension of the definition in finite-
dimensional spaces, it is not capable of basis in-
variant extension to the case where A is unbounded
as the counterexample in Appendix I shows. This
leaves the integral formula (7) in Sec. 3 as possibly
the most natural extension of the definition.

Following von Neumann', Chap. IV, an expecta-
tion value function M is assumed defined which
associates to each operator the expectation value of
its corresponding observable. M is assumed defined
for all bounded self-adjoint operators and all un-
bounded self-adjoint operators for which either
M(A,)or M(A_.) is finite. Here the decomposition
A=A, — A_where A, = [cAdE,*and 4A_ =

°. — X\ dE,\* are positive self-adjoint operators is
used. Several restrictions are placed on the function
M in order that it be suitable to represent the ex-
pectation values of physical quantities. One complete
set of such restrictions is weaker than von Neumann’s
set of axioms, and uses two noncommuting operators
simultaneously only in the additivity requirement
M4 + B) = M({4) + M(B) for bounded self-
adjoint operators A and B. In the rest of the axioms,
all operators simultaneously considered commute and
are therefore simultaneously measurable. This in-
creases the plausibility of these axioms, since to such
operators and their corresponding measurements,
classical logic and the classical theory of probability
are applicable. From these restrictions, the statistical
formula is proved: there is a unique positive bounded
operator W with unit trace for which M(4) =
Tr (WA).

2. THE TRACE OF AN OPERATOR

If W is a positive operator in a separable Hilbert
space © and ¥ = {y,}:., is an orthonormal basis
of  contained in dom (W), then we define Try (W)

1 J. von Neumann, Mathemaiische Grundlagen der Quanten~
mechanik (Springer—\ferlag, Berlin, 1936).
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t0 be 3., ($n, Wi,). This is a sum of positive real
numbers which therefore either converges or di-
verges to -+ . It is clearly linear as a function
of W:IEW S V,then V — W > 0 and Tre(V) =
Tre (W) + Tre (V — W) 2> Tre (W)—the trace
is isotonic as a function of W for a given basis ¥.
Of special importance are operators with finite trace.
If {E\"}\er is the spectral resolution of W: W =
fz A dExw, and if we set wa = J — E)‘W, ER)\ = F)‘W@,
then R, is finite dimensional for every A > 0 provided
Tre (W) < -+ for some basis ¥. To prove this,
we recall that E\¥ commutes with W and that the
product of two commuting positive operators is posi-
tive; hence WE\” > 0. From this it follows that

W>Ww-— WEAW=F)‘Wf wdB”
4]

=ﬂ pdEfzxj; dE,” = \I¥

and consequently,
TI‘W(W) 2 Tl'\lr()\wa) = \ Tre(F, AW)'

Tre (F\7) is thus finite for every A > 0. It remains
to be shown that if M, has dimension D, and
Try (F\”) is finite, then D, = Try (F\7). To do
this, we take an orthonormal basis ® = {¢,}2%,
of N, and write ||[F,"y,||> in terms of ®; this is
possible since F,"y, € N, and N, is itself a Hilbert
space.

Tr‘I'(FXW) = ’; (’lbm F?\w’ﬁn)

AT ACATEED 35 3 THF ATHS

Because F,” is self-adjoint and F\"¢, = ¢., F\7
may be removed in the last sum. Since the sum
converges and all the terms are positive, it is ab-
solutely convergent and may be resummed in any
order. In particular, we may interchange the summa-
tions and apply Parseval’s formula again,

T(R") = 35 32 [ ¥ = 2 [Ivall’ = Du.

As shown above, Try (W) 2> A Tre (F\¥) = AD,
consequently D, — 0 as A — . Since D, is an
integer, it must vanish for all A > pu, for some u.

Thus F,¥ = 0if A > u, and W is bounded. The
spectral theorem then reads

W=fo">\d&“’

I

L s
=f)\dE{"+f)\dExw if 0<e<p.
1] .
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The first infegral converges uniformly to 0 since

I rone

2

- f N d B8]

<& [TalBTar = ¢ ol
0
and consequently,

Le

f Y dE\¥
i}
We thus have

Wie) = f NE," 3 W as e— 0.

The null space of W(e) is M¥ = E.”H whose
orthogonal complement N¥ = F,”$ is finite di-
mensional. Thus W(e) can be written as a ‘‘diagonal
matrix” W(e) = DY w,P,. with orthonormal
om € NT. Because of this, (W — W(e))p, = 0
and W¢,, = W(e)p, = W.Pn. If we specify the
choice of the ¢, at each degeneracy, then W will
be represented as an infinite series

W= 3 w.Ps.
mm]1

in which the convergence is uniform and We,, = w,¢,.
If we include in ® = {¢n.}o., & basis of My and
allow the corresponding w,, to be 0, all the results
above remain valid, and & is a basis of $.° We now
turn to the problem of invariance of Try (W) with
respect to ¥ which will appear as a special ¢ase of
the considerations of the next paragraph when A4 is
set equal to 1.

If A isa bounded operator, the quantity Try (W, 4)
is defined as the series Do, (¥, WAY,) provided
this series converges. This reduces in the case 4 = I
to Tre (W), If this quantity is finite for some basis
¥,, then the series does converge, and

TPW(W; 4) = Tr.(W, A) = Tre(4, W), 1)

where @ is the basis of eigenvectors of W as dis-

2 This means that W is not only bounded, but also
completely continuous, cf. R. Schatten, R. Schatten, Norm
Ideals of Completely Continuous Operators [Erg. Math, Wiss,
27 (Springer-Verlag, Berlin, 1960)]. From, the summability of
the eigenvalues of W which is proved later, it follows that W?
belongs to the Schmidt class, the set of all completely con-
tinuous operators for which the series of eigenvalues is square
summable. Thus W = WiW? belongs to the trace class, the
set of all produets of two operators from the Schmidt class.
In the countepexamé)le of Appendix I, the operator 4 is such
that AW is bounded but not in the trace class, and this per-
mits convergence without absolute convergence of the series.
Somebof 1l;£he following discussion can also be found in Schat-
ten’s book. :



1212

cussed above. For the proof, we apply Parseval’s
formula in the following computation:

Try(¥, A) = Z: (W, WAY,) = Z Wy AV

L L

=20 > (Wb, 60)bm, AV

= ,; W ; (A*d’m) Kl’n)(ll’m ¢m)° (2)

If the absolute convergence of the last series is
demonstrated, the interchange of the summations
is justified, and the steps may be reversed in order
to show the convergence of the defining series for
Tre (W, A). For this purpose, we apply the in-
equality [ab] < %(la* + [b|?), remembering that
144 = 1Al

© o

2 W 2 [(A*m,y ) (¥, )]

m=1 n=1

< 3 e 3 K0y A%+ [y 6

m=]1 n=1

o

2 3wall 4%l + [loall")

I

< 3 dwa(l4] + 0.

The convergence of the last series above is a result
of the isotony of the trace and the fact that for any n,

w < E W Pym-
Tre, (W) > Zw Tr (Pyn) = }:w

m=1
for any =, and consequently
> wa < Tre,(W).
m=1

Returning to (2), we may immediately apply
Parseval’s formula and get

Try(W, A) = Z_.:wm(A*qu, én) = Z (Wnr, Ad)

i (¢my WA¢m) = TI‘{,(W, A)

m=1

3 oy Aund) = Tro(4, W) @

which proves (1).
From (1) we may draw the following conclusions:

Il

JOHN LANGERHOLC

(a) If Try, (W) is finite, then Try (W) is finite
for any ¥ and equal to Try, (W). The trace of a
positive bounded operator is thus a unitary in-
variant. We designate the common value of Try (W)
for all ¥ by Tr (W). By direct computation, it is
seen that Tre (W) = D2, Wo = 2.2y ($my W)

(b) If Tr (W) is finite, then Try (W, A) =
Trs (W, A) for any ¥. Their commmon value is
designated by Tr (WA).

(c) From (3), Tr (WA) = 2 oei Wa(dm Ady) is
positive if A is. Since Tr (WA) is linear in A4, it
follows that

A < B=Tr(WA) < Tr (WB). 4)

If P is any projector and ¥ is an orthonormal basis
of eigenvectors of P, then direct computation shows
that Try (WP)=Try (PW)=Try (PWP) < Tr (W).

Finally, we prove thatif A, — A, then Tr (WA4,) —
Tr (WA). From the strong convergence of the op-
erators A,, it follows that there is an upper bound
for their norms,’® C. By linearity of the trace, A may
be taken as 0. Then since

[Tr(WA,)| < f; W [(Ymy Aatm)|

< 2 w.C < Te(W)C,
m=1
the terms of this series which all approach 0 are
uniformly bounded, and by the criterion of Weier-
strass, the series itself converges to 0.

3. INTEGRAL REPRESENTATION OF THE TRACE

If A is a bounded self adjoint operator, then we
define ®(4) = Tr (WA). @ is an isotonic linear
functional with ®(I) = 1. With the notation of
Nagy* p. 24, the spectral theorem may be expressed

2NEAS) < A < NGBS,

where E“(5,) = E\.,,* — E,,” for a given partition
Z = {\:}; of the interval [—]|4]], +]|4]]]. We de-
fine ||Z|| = max; (A\;+; — A;) and from the isotony
and linearity of ® obtain

2 NOEN(S) < @(4) < 30 Ma (B,
whexte the difference between the ’extreme members is
2 (o = NR(E(3)
< 2 izl @@ @) = |1z]] @)

8 8. Banach, Théorie des opérationes linéaires (Monografije
Matematyczne, Warsaw, 1932), p

4B. v. 8z.- Nagy, Spektrakiarstellung Linearer Trans-

{tg;rzuitwnen des Hilbertschen Raumes (Sprmger—Verlag, Berlin
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As ||Z,|] — 0, the two integral sums approach ®{4)
whatever the choice of the sequence of partitions
Z,, and since ®(E“(3,)) = ®(E...") — ®(H,"),
we have

o) = [ 2 do@? )
and, consequently, a simple upper bound

[FY ]
@] < [ D de@?

< l4ll [ dems = 4] o) ©

which shows that & preserves uniform convergence.
With @(4) = Tr (WA), (7) reads

Te (WA) = f_m N d Tr (WE2). @

From the monotony of A — E,* and isotony of @
follows the monotony of A — ®(E,*). This suggests
the use of (7) as a definition of Tr (WA) for un-
bounded self-adjoint operators A as long as one of
the integrals over (— «, 0], [0, 4+ «) is finite.

From this definition, several commonly used form-
ulas may be derived. If A has a discrete spectrum:
A = >°°., a,P, where the a, are the eigenvalues
of A and the P, = E, * — E,._* are the projections
on the corresponding eigenspaces, then the Stieltjes
integral above reduces to the infinite series

T (WA) = 3. e Tr (WP)

n=]

If {¢{}. is a basis of P, 9, then Tr (WP,) =
2o W, WyL) and

Te (WA) = 3 3oy,

A=l m

W),

where a!® = q, is the eigenvalue of ¢ under A.

From the assumption that either Tr (WA,) or
Tr (WA_) is finite, it follows that either the above
series is absolutely convergent or definitely divergent
and therefore the series may be rearranged in any
way. If we relabel the eigenvectors {y.}r., and the
corresponding eigenvalues «, and rearrange the
series, we obtain

<

Tr (WA) = 2, a(¥, W) ®)

r=]1
If A is positive, then
Tr (WA) = lim f Nd'Tr (WEL) = lim Tr (WAE?).
p—o V0 ]

Since AE,* is a bounded operator, we may apply
the formula in Sec. 2(¢) to obtain
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Tr WAE) = 3 wn(ém; AL, 6)

me=]

= Z W ]; >‘ d(¢m7 EXA¢m)

mm=l

o
=Zwm

m=1

M
fo A d ||Byioall.

Since the terms of the sum are positive, increasing
functions of u, we may take the limit inside and find

Te(74) = Sw. [ Aa B ©)

m=]

The individual terms are finite iff ¢,, & dom (4%)
as seen from the substitution p = A}:

[ raimssr = [ 0 almtslr.
o 1)
If, in addition, ¢,, € dom (4) for all m, then we have

Tr (WA) = mf: wa ||4%.|]" = mf: Wa(Pmy Adn) (10)

from which linearity in A is obvious. It is proved
in Appendix II that if 4 commutes with B, then
Tr (WA) + Tr (WB) = Tr (W(4 + B)). However,
no general results are obtained about additivity if
A and B do not commute.

4. THE STATISTICAL FORMULA

The considerations of this section will be restricted
to bounded operators; the formula will be extended
in the next section. The first two axioms are of an
algebraic nature (not requiring the concept of limit)
and may be stated as follows: for any pair of bounded
self adjoint operators 4, B,

(I) M(4%) > 0, M(I) = 1;
A1) M(4 + B) = M(4A) + M(B).
From (I) and the existence of a self-adjoint square
root A = J& (\)! dE,* of any positive operator 4,
it follows that if A > 0, then M(4) = M((4%?) > o.
It can now be shown that M is linear. The proof
follows.

(8) M(nd) =
integer n > 0;

(b) mM(4) = M(mA)
= M(n ;—" A)
- (3t 4).

M(% A) = % M(A).

nM(A) (by induction) for any
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(0 M(D = M{I + 0)
= M(I) + M(0),
M(©0) = 0.
(@ M(4) + M(—4)
= MA — A)
= M(0) = 0,
M(—A4) = —M(A).

(¢) IfA <B,thenB— A >0and M(B—~A)>0.
Since M(B) = M(A) + M(B — A) > M(4), we
have A < B= M(4) < M(B).

@) If A > 0 and o > 0, then for any pair of
rational numbers ¢, r with ¢ < a < r, we have
gA < ad < rA so that from (b). and (e), we get
gM(A) = M(@@A) < M(ad) < M(@rA) = rM(A).
Also gM(A) < aM(A) < rM(A) so that |[M(ad) —
aM(A)] < (r — @M(A). Since r — ¢ may be
arbitrarily small, M(ad) = aM(A) which is true
also if @ = 0.

(g If A >0and o < 0, then |a] = —a > 0
and- M(ad) = M(—|a] A) = —M(e| A) =
—|a] M(4) = aM(A).

h) fa>0and A = A, — 4., then M(ad) =
M(eA, —ad_ ) =M(ed,) — M(ad ) = aM(4.) —
aM(Al) = eM(A, — 4) = aM(A). If @ < 0,
we may consider |a] (—A4).

The function M is linear, and from (e), isotonic.
M(I) is finite so that the integral formula (5) of
Sec. 3 applies to M. If 4 is a bounded self-adjoint
operator, then
M(4) = f N AM(Ey). (1)
To make the following considerations easier (to
avoid rearrangement of series and complicated, un-
natural definitions), we extend the domain of defini-
tion of M to include all bounded operators by means
of the canonical decomposition 4 = A% + 747,
A" = 34 + A%, A" = Li(A* — A) as follows:

M(4) = M(A®) + iM(4D). (12)

The function M is linear (preserves linear combina-
tions with complez coefficients); and if A* = 4,
then A% = A4, A" = 0, M(A) = M(4). M also
preserves uniform convergence since

(A = |MGA + A%)]
+ [MGi(A* — ) < |34 + 49)|°
+ |[3i(4* — A)|* < (4]l + [|4A¥])?

+ (14 + 1141D* = 2 [14]]. (13)

LANGERHOLC

It is clear from a twofold application of Parseval’s
theorem that we have the following strong con-
vergence:

[ ©

Py =2 2 () ¥ X al G ) (19)
if |[¢]| = 1 and {¢.}5., is an orthonormal basis.

The operator |¢ X ¢| is defined by |¢ X ¢| x =
Y(g, x) for x & 9. To show that the convergence
is uniform, we recall the definition of

|[|A}] = sup |[Ag]]
l¢li=1

and note that

,,_2-; (& ¥a) [¥m X Yl

> (4, V¥nltm 9)

n=N

(3 tutter 92, 4)

n=N

= sup
Igpli=1

2

It

sup
lgl=1

”;v X))

<

= nz_‘ZN |(n, ¥)—0 88 N> o

since it is the remainder of a convergent series.
For the summation over m, we have similarly

33 0 e X bl (i )

2

= sup
Igi=1

3 (s ¥ 2 (6, Vo)V, )

m=M

3 (Yo D

m=M

" B

= sup
ligll=1

= M_ZM (¥, PP =0 as M —> w.

Since both series converge uniformly, we may apply
the result (13) and linearity to obtain the formula

MP) = 33 3 Wy bV X VaD s ¥)

mm=l nw

= 5 5 W W ),

mel n=]

where w,,, is defined as M (¢, X ¥.|). To show that
there is an operator W for which w,,, = ({n, W¥..),
we consider the bilinear form

16, 9) = 3 @, ¥doualias ¥)-

The quadratic form induced by f, defined by f(¢) =
1@, ¢), is clearly equal to M(P,). Since 0 < P, < I,

(15)
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0 < M(P,) < M(I) = 1, fis bounded. This implies®
that f is bounded and that there is a unique bounded
self-adjoint [since w,, = (w,.)*] operator W for
which w,,, = (¥., W{,,). W is positive since (¢, Wo) =
@, ) = M(P,) > 0. By applying Parseval’s form-
ula in the opposite direction, we find

MP) = 32 3 (W 930, W) ¥

= (¥, Wy) = Tr (WP,).  (16)

This formula extends immediately to projectors P
on finite-dimensional subspaces I if an orthonormal
basis of M, {¢¥.}%., is taken and P is expressed
as ) n_, P,.. Then

uE) = ZUE,)

- 3T (WP,.) = Tr (WP).

mm=]

17

The third axiom requires for its interpretation a
consideration of the probability function induced by
M?® on the set of projection operators. In the cor-
respondence between self-adjoint operators and ob-
servables, the projectors correspond to observables
having only 0 and 1 as measurable values. These
in turn correspond to “yes-no” propositions; the
proposition 7(P) is verified when the measured value
of the observable corresponding to P is 1. The
probability that = is verified is then the expectation
value of P, i.e., if = is the proposition corresponding
to P, then

w(r) = M(P) (18)
is the probability of verification of = when the state
of the system is described by the function M.

For the concepts and results in this paragraph,
we refer to Nikodym.” If {P,}7., is a decreasing
sequence of projectors, then the corresponding prop-
ositions m, will also decrease in the sense that
Tne1 = .. The projectors commute and thus cor-
respond to simultaneously measurable operators. The
m, will thus be compatible, and from the isotony
of M, it follows that w(m,) > w(m,.,). We may

8§ P. R. Halmos, Introduction fo Hilbert Space Chelsea,
New York (1957) pp. 32, 39.

¢ G. Ludwig, Die Grundlagen der Quantenmechanik
(Springer-Verlag, Berlin, 1954), p. 51. Here the statistical
formula is used in some proofs before the discussion of -the
probabilities is completed, but all of these proofs can be
easily modified so as not to depend on this specific characteri-
zation of the expectation value function, and circularity of
reasoning is thus avoided.

7 0. M. Nikodym, Une nouvel appareil mathématique pour
la théorie des quania. Ann. Inst. H. Poincaré (1947). 1t should
be pointed out that if two propositions are not compatible,
then their formal conjunction does not possess the intuitively
necessary properties of a conjunction, and that moreover,
there is no other proposition which qualifies as a substitute.
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define the infimum of the projectors A,., P, as the
greatest projector which is less than or equal to
P, for all n. This exists for any family of projectors;
and in particular, if M, = PO, M = [N M,
then AJ_, P, = proj (). The conjunction of the
propositions is then = (proj (M) = An., m,; this
is the proposition which is verified iff =, is verified
for each n. If AJ., P, = 0, then w(A ., 7.) = 0;
this proposition is impossible to verify. As the third
axiom, then, we require that

(II1) If {P,}Z., is a decreasing sequence of pro-
jectors and if AZ., P, = 0, then w(m) =
w(r(P,)) > 0asn — o,

We first verify that if P, — 0 (strong convergence)
under the assumption that the sequence is decreas-
ing, then A, P, = 0. Forif ¢y € IM < M, for
all n, then P,y = ¢, and from Py — 0 follows
Y = 0. Thus M = {0} and A, Ps = 0. If {P,};.,
is an increasing sequence of projectors for which
P,— P,then A, (P — P,) =0because {P — P,};.,
is a sequence of projectors decreasing strongly to 0.
But from axiom (III), we have M(P) = M(P,) +
MP — P,)and M(P — P,) = w(m=(P — P,)) >0
so that M(P) = lim,_ ., M(P,). It is easily checked
that given any projector P and any basis of MN=PH,
it is the strong limit of the increasing sequence
{P,}>., where P, is the projection on the subspace
generated by the first n vectors in the basis (We
assume them indexed by integers which is possible
since §, and therefore M, is separable). This, with
(17) yields
M(P) = lim Tr (WP,) = Tr (WP),

where the last equality results from the fact that
Tr (WP) — Tr (WP,), when computed with respect
to the basis discussed above is the remainder of a
convergent series.

Thus we may conclude, using the integral rep-
resentations for M and the trace and the fact that
M(E\*) = Tr (WE,*), that for any bounded self-
adjoint A4,

u = [ Z N AM(B")
-[ T NdTr (WEA) = Tr (W4).  (19)

5. THE FORMULA FOR UNBOUNDED OPERATORS

Although two unbounded self-adjoint operators
may not have a common domain which is dense
in §, this is always the case for commuting op-
erators. Two operators A = [> A dE,* and B =
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f2 A\ dE,® are said to commute if E,* commutes
with E,® for every A, » € R. In this case

D= &E}R M O MEH) N (ML O M?)
is included in dom (4) Ndom (B) and is dense
in 9. For this reason, and because commuting op-
erators are also simultaneously measurable, we re-
strict our attention to commuting self adjoint op-
erators. This will be seen to be sufficient, however,
for the extension of the formula. Axioms (I) and (II)
of Sec. 4 may be immediately generalized. For any
pair of commuting self-adjoint operators A4, B,

1) M4’ > 0;

(I") M4 + B) = M(4) + M(B) unless
M) = —M(B) = + .

With F,* = I — E,*, A may be decomposed into
a sum of commuting operators AE,* + AF,* to
which (II°) may be applied to yield M(4) =
M(AE,*) + M(AF,*) in case M(A) exists. For
pu = 0, this reads M(4) = M(—A_) + M(4,) =
M(A,) —M(A) [M(—A) = —M(A) is proved
as in Sec. 4(d)] so that only positive operators A
need be considered. If this is the case, then AE,*
is bounded; and M(AE,*) = Tr (WAE,") =
fAxd Tr (WE\*) — [5Ad Tr (WE,*) = Tr (WA)
as u — . Because the integral above is an increasing
function of u, M(AF,*) is decreasing and is positive
since AF,* > 0. Hence, the limit a(4) = lim,..
M(AF,*) exists and is nonnegative. M(4) =
Tr (WA) 4+ a(4) > Tr (WA).

That equality above cannot be proved from the
axioms is seen from the following counter example.

+ if A > 0 is unbounded,
M(A) = Tr (W4) if A is bounded,
if 4 < 0 is unbounded.

— C0

To eliminate such possibilities, a regularity condition
is needed which permits the calculation of the ex-
pectation value of an unbounded operator from the
expectation values of certain bounded operators. One
possibility is a much weakened form of von Neu-
mann’s axiom B’,

(II1%) if {A,},-, 18 a family of commuting bounded
positive operatorsand 4 = Y =, A, (strong
convergence), then M(4) = 2_», M(4.),

or the equivalent

(III3) if {A.}i., is an increasing sequence of
bounded operators such that 4, — A4, then
M(A,) — M(A).

JOHN LANGERHOLC

The statistical formula follows from this if A, is
set equal to AE,%. Then AE,* — A so that
M(A.E,*) —» M(A), and as has been seen above,
M(A,) = Tr (WA,) — Tr (WA).

An alternate approach to this axiom, which may
be more appealing, relies on the connection with
classical probability theory® in which the proposition
corresponding to E,* is that of measuring a value
of A less than or equal to . If we set w(\) = M (E,*),
then w is a probability distribution since w(— «)=0,
w(+®) = 1, and is right continuous and non-
decreasing. Also, from the integral representa-
tion (11),

M4y = [ nam@s = [ nawe)  9)
for any bounded self-adjoint operator A. This sug-
gests the requirement that the formula remain valid
for unbounded 4, i.e.,

(II12) M(4) = f_ TN dw) i w) = MEY.

From the observation that w(\) = Tr (WE,*) and
the definition of Tr (WA) for unbounded A, the
statistical formula follows.

As a final point, we remark that the possibility
M(A) = + = is not restricted to this theory, but
even in the pure-state theory where it is assumed
that W = P, for a certain ¢, one has M(4) >
Tr (PyA) = [ Ad ||[EXY|P. IfE A > 0 and ¢ €
dom (4%), then this integral is infinite. It is not
clear even if the integral is finite that M(4) is a
linear function of 4. If ¥ & dom (A4), then from
the spectral theorem, M{(A) = (¢, Ay), but it is
possible that ¥ & dom (4) and ¢y € dom (4%).
In this case, the integral is finite, but (¥, Ay) is
not defined.
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APPENDIX 1

One might be tempted to use the definition
Tre (WA) = D%, (4, WAY,) when A is unbounded
provided the basis {¢,}r., © dom (4) so that the
expression is well defined with the possible exception
of the convergence of the series. The following ex-
ample shows that the definition is not independent

of the basis. We choose a basis and separate it into

8 G. Ludwig Ref. 6, Chap. IT 2; G. Birkhoff and J. von
Neumann Ann. Math. 37, 823 (1936).
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two infinite subsets ¥ = {¢,}o, U {¢.}o,. ¥, and
¢. span a two-dimensional subspace of § for each
n, and  is the direct sum of these subspaces.
Now let

W= 2 W, W.=2"proj @7 ¢ + ¢u),
A= 2 A,; A, = 2"proj (s + Buva),

[J
-

n

where a,, 8, are real and o2 + 82 = 1.° If ¢, and ¢,
are grouped and the summation is performed with
this grouping, then we obtain

Tr‘I’o(WA) = ;Tr(¢n.¢n)(WnAn))

where the terms of the series are traces in the two-
dimensional spaces. Now

Tl'w.m(Pw+¢)/V§P(a¢+ﬂ¢))
= 3¢, v+ QW + ¢, a¥ + B)ay + B, ¥) + -+
= 3(a + Bla + 3« + B8,

where the terms arising from ¢ and ¢ are still
separate. The series becomes

©

Tr‘I'o(WA) = Z %((an + Bn)an + (an + ﬂn)ﬂn)

n=1

©

= 2 o + 8.

n=1
Conclusions

(1) If «,, B, are chosen so that a, + 8, = 0,
and 2=, (a. + B.)° converges, then a, + 8, — 0
as n — «. Since |e,| < 1, |8.] < 1, the series also
converges if the parentheses are removed. If o, > 0
then «,, —8, — o}

(2) If at the same time Y =, (2, + B.) does not
converge, then > =, (a, + B.)a, Will not converge;
and therefore the series Y =, (Y., WAyY,) does not
converge absolutely, and
- (8) by a rearrangement theorem of Riemann, the
vectors in the basis may be rearranged so that the
series has any value desired.

(4) An example is provided by @, = & + »n~ %)}
Bn= —I% - n_ll*‘ Forn > 1) a,+ B, = (% + n-l)* =
[1 + s(rn™")]/v2n where s is a convergent power
series without a constant term.

? That A is a self-adjoint operator follows from Lemma of
Sec. 120 in F, Riesz and B. v. Sz.- Nagy, Functional Analysis,
(Fredrick Ungar Publishing Company, New York).
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APPENDIX II

The linearity of ®(4) = Tr (WA) as a function
of A is trivaial for bounded A because of the series
representation, but this series can no longer be used
if A is an arbitrary self adjoint operator because
of the result of Appendix I. However, if A and B
commute, then it is possible to prove that®(4A+B) =
®(4) + ®(B) and apply the considerations in Sec. 4,
(a)-(h) to prove linearity as long as there is not
a subtraction of infinities. We assume that 4 > 0,
B >0andthus4d + B> 0.

The proof begins with the observation that
as the product of commuting positive operators,
E,“E,°E,**® > 0 and is increasing as a function
of e, B, u; thus ®(E,“E;"E,**") is increasing in
a, B, and u. We have also that

lim (E‘,AEBBE“A+B) = 'I)(E‘,A+B)

a,fo

since E,**?(I—E,*E,") is decreasing and from (10),

(20)

®(E,"*°(I — E.'E,"))

= 2 wa [[BA2 — BLES )l
m=1

Since (I — E,“E;")¢ — 0 for any ¢ and the series
is convergent for any «, 8, the criterion of Weier-
strass may be applied to prove that the sum ap-
proaches 0 as @, 8 — .

Using (9) and Lebesgue’s bounded convergence
criterion after an integration by parts, we have

®(4 + B) = lim f "N dD(EAP)

poo

= lim |:,4(I>(E,.‘“’) - fo " o(B4+?) d)\]

oo

= lim lim

o o,

[M‘D(EaAEpBE"A+B)
—-‘/‘(I)(EQAEpBE)‘A-'.B) dA]

— lim lim f N A0, PEAE,")
0

oo a, -

= lim lim ®((4 + B)E,**’E“E/").
e a,fow
The last written quantity is increasing in «, 8, and
u so that the limits may be interchanged (The limits
may be replaced by suprema. These are completely
associative and commutative, i.e., sup, sups Z.s =
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Sups SUp, T.s; and thus the limits commute). As dom (4) M dom (B) © dom (4 + B). Thus

a result, (A 4+ B)E,**®E.,“E°y AE**®*E “Es®y +
A +B) = lim ®(4 + BEAEAE? BE,**®’E,*E;"¢ and we have
" « )
a,f, g0 A+ B A1 B
®4) = lim ®(AE*°E.AEP) ¢4+ BB
o Bopmeo * ’ = ®(AE**’E*E;") + ®(BE,**’E*E;°)
°(B) = v ET« ®(BE,"*"E.'Ey"). @1)  and consequently, from (21),

If ¢ is an arbitrary vector, then E,***E,“E;°y & ®(A + B) = ®(4) + ®(B). (22)
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I. INTRODUCTION

OLLOWING Dirac’s formulation' of the general

conditions for an Hamiltonian statement of rel-
ativistic particle dynamics, it was recognized by
Thomas® that the dynamics will not in general admit
a description. of particle motions in terms of in-
variant world lines.

Thomas® and later Foldy® have shown explicitly
how to construct Dirac’s ten fundamental dynamical
variables that generate infinitesimal time and space
translations, space rotations, and pure Lorentz trans-
formations in accordance with the required sym-
metry of the dynamies under the full group of in-
homogeneous Lorentz transformations; and Currie,
Jordan, and Sudarshan have underscored Thomas’

the effect that (at least in the case of two or three
particles) world-line invariance, plus Hamiltonian
description of motion, demands free-particle motion
only.*

This species of misfit between relativity require-
ments and Hamiltonian requirements must be
reckoned a significant one, because on the one hand
world-line invariance is so simple and compelling
a feature of the relativistic view of nature, saying
merely that one and the same particle orbit should
indeed be an orbit no matter which inertial observer
considers it, and on the other hand because an
Hamiltonian rendition of motion stands at the root
of the quantal understanding of motion; the denial
of world-line invariance may well be a denial of an

¢+ D. G. Currie, T. F., Jordan, and E. C. G. Sudarshan,

point by proving a ‘“zero-interaction theorem” to

1P, A. M. Dirae, Rev. Mod. Phys. 21, 392, gl%g}m
3 1., H. Thomas, Phys. Rev. 85, 868 (1952); B. Bakamjian
and L. H, Thomas, sbid. 92, 1300 (1953); B. Bakamjian, tbid.
121, 1849 (1961).
3 L. L. Foldy, Phys. Rev. 122, 275 (1961).

Rev. Mod. Phys, 35, 350 (1963); D. G. Currie, J. Math. Phys.
4, 1470 (1963); J. T. Cannon and T. F. Jordan, ibid. 5, 299
(1964). For n particles, it appears that the zero-interaction
theorem has been proven by H. Leutwyler, to be published
in Helv. Phys. Acta. I thank the referee for bringing the
latter to my notice.
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understanding of the most physiecally consequential
particle interactions. To the field theorist the prob-
lem has perhaps no standing at all, since the premise
of the problem is that interacting particles are de-
scribed purely in terms of particle variables essen-
tially on a direct action-at-a-distance basis. But in
at least one case (electrodynamics) this premise is
completely tenable and moreover makes a long step
in obviating the inconsistencies and incompletenesses
that have marked field theory since its inception;
8o that inquiring into the Lorentzian—Hamiltonian
incompatibility is physically relevant, albeit by a
circuitous route, even for field theory.

The object of the present note is to show that
the incompatibility can be traced to the assumption
that particle positions may be taken to be canonical
coordinates in an Hamiltonian scheme for the par-
ticle motions; in other words, responding to the
query in the title, that both world-line invariance and
an Hamiltonian description of motion of interacting
particles are quite compatible so long as an a prior:
identification of positions as canonical coordinates is
eschewed. That one may not count position among
the canonical variables of course raises appreciable
new problems in any program of quantization, but
the knowledge of the existence of some canonical
formalism may at least open the way to dealing
with the problems on familiar ground. It is perhaps
not too great a price to pay for keeping invariant
world-lines.

The march of the argument is as follows: (a) We
shall work first of all within the frame of an action-
at-a-distance theory—Wheeler~Feynman® electro-
dynamics—where at the outset the theoretical struc-
ture embraces a description of motion in terms of
particle variables only, and thereby has the right
footing physically for entertaining the question of
an Hamiltonian scheme; and where Lorentz covar-
iance of the theory, including world-line invariance,
is built in and ecan, so to say, be left to shift for
itself. (b) Next we show that the primitive equations
of motion of interacting charges are formally re-
ducible to Newtonian order (second-order equations
for each Cartesian coordinate of each particle), and
shall produce in an approximation of the latter,
an example of ordinary Newtonian equations gen-
erating invariant world-lines. (¢) We then invoke
the Lie-Konigs® theorem, giving a simple direct proof
of it, to tell us that the Newtonian-order equations

§ J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21,
425 (1949). )

s . T. Whittaker, Analytical Dynamics (Cambridge Uni-
versity Press, Cambridge, England, 1937).
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have Hamiltonian representations. (d) Finally we
use the zero-interaction theorem to tell that among
these representations there is none in which particle
positions are canonical variables—for the motions
being described are invariant, but curved, world-
lines. This indirect proof, using the zero-interaction
theorem, will be substantiated by a more direct
plausibility argument, depending upon severe in-
tegrability conditions for constructing an Hamil-
tonian containing positions as canonical variables.

II. EQUATIONS OF MOTION FOR
INTERACTING CHARGES

It will suffice to consider just two charges inter-
acting via the half-retarded - half-advanced fields
produced by each at the position of the other, as
in our earlier discussions’ of Wheeler-Feynman
theory. Self-interaction is explicitly ruled out, and
the time-symmetrical interactions of the charges not
only with each other but with the rest of the electro-
dynamic universe (viz. the Wheeler—-Feynman ab-
sorber) are then comprehending the conventional
scheme of purely retarded interactions of charges
together with the Lorentz—Dirac force of radiation
damping for each.®

Using a Taylor expansion about present time ¢
of the Lienard—~Wiechert potentials due to e, at r,(f)
at the position r,(¢) of ¢,, we can write the Lagrangian’

Ly, vi, ) = —m’(1 — Vf/cz)*
= Dy A
— e, ;} zplzczp (1 _ V102V2)r2p 1 (1)

for e,’s motion, that of e, being thought of as pre-
scribed. (¢ is not placed equal to unity because it
will be used as an ordering parameter later). Here
r = |r, — 1| and the operator D, is a time dif-
ferentiation of particle-2 variables only:

V,:°V. -
(1 - )

= {(2)(1 - mem®) p, s,

This merely translates the fields at r,(¢), coming from
the right advanced and retarded world points on
e,’s trajectory, into the dynamical language of e,’s

7 E. H. Kerner, J. Math. Phys. 3, 85 (1962); Phys. Rev.
125, 2184 (1962). g

8 It should be pointed out that for what follows we could
just as well use the conventional scheme, insofar as the object
18 simply to obtain Newtonian-order equations of motion
giving curved invariant world lines. This is achievable on the
conventional basis of electrodynamics, but is simpler in the
Wheeler-Feynman scheme which is any way the more com-
plete and consistent one, and admits conservation laws.
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present motion; it is assumed for the moment that
the motion is regular enough to permit this. The
mark of the time symmetry is in the evenness of the
powers of D,. The reason for concentrating on the
single present time is of course that we must give
the time a Newtonian role in aiming toward an
Hamiltonian theory (Dirac’s instant form of the
theory) that looks to the evolution of the particle
motions differentially in any inertial observer’s
frame; the two separate proper times for the par-
ticles have to be set aside, though we shall have
an auxiliary use for them.

For the motion of ¢, in ¢,’s fields we find similarly
a Lagrangian L,(r,, v,, ) by reversing the roles of
1 and 2 above. A joint Lagrangian comprising both
motions simultaneously, which formed the basis for
our earlier discussions,” can also be constructed by
observing that the operator of total differention
D = d/dt is identically D, + D, so that

D? = Di(D — Dy
= (—D,D,)” + exact derivatives.

The exact derivatives may be dropped in Eq. (1)
leaving a symmetric interaction term (D, and D,
commute) whereupon, after symmetrizing also the
first term in L,, a joint Lagrangian is (e = e;e,)

v\ v\
L= —mlc2(1 - c—;) — mec®(1 — ?5

R ERDE(_nmhe

2p! ¢*? c

The equations of motion from the private La-
grangians L;,

3L,~/6r,~ — D aL./av, = 0, (3)

are not different, except for a rearrangement, from
those coming from L,

oL _ poL  padL | _

or; b av; +D av; =0 @)

These infinite-order equations of motion are

plainly Lorentz-invariant and are describing in-
variant world-lines. For, from the private-La-
grangian point of view we have the individual
action principles

o [{-me(t - 5) +%veate, won

— ed'(ts, [ri(t)])} =0, (5

EDWARD H. KERNER

¢ =1, 2; j = 2, 1) where the potentials with
argument [r;(t)] are indicating that they are func-
tionals of the motion of ¢; whatever this motion
may be. Therefore, in this view point, e,’s motion
can be discussed covariantly through introduction
of the proper time dr; = dt(1 — v3/c*)! and writing

) f {%m;ufu: + %M:A:(ri; [ri(t("'-‘))))} dr; = 0 (6)

(¢ =1,2;j =2, 1; summation over » only; uf =
4-velocity of e;; A} = 4-potential at e, due to ¢;).
Though formally the joint Lagrangian can be used
to build up an Hamiltonian theory (Ostrogradsky’s
method®), comprising an infinite set of canonical
coordinates and momenta to cope with the infinite-
order of the equations of motion, this is not relevant
to the question whether there can be an Hamiltonian
scheme for interacting particles employing exactly
the Newtonian quota of three coordinates and three
momenta per particle. If there is such a scheme,
it is implied that the primitive equations of motion
are of Newtonian-(second-) order;and one suspects
that there might therefore be some kind of reduced,
finite form of the electrodynamie joint Lagrangian L.
This possibility however,’ on a direct attempt at
order reduction, is at best fraught with difficulties.
Alternatively it suggests itself to examine directly
the primitive equations of motion and to ask in
what sense they might be reducible to finite-order
equations. Writing Eq. (3) in extended form, we have

mv; — i Vi
Da—wep = ™% 5. = vi/op

_ A = v/ + v/
- { a — v/ } e

9 9 D¥ o
= —e(;,’? — DEV_.—) Z W a1 - vl-vz/cz)rz L

The inverse of the dyadic { } is (I — v,v,/c®)(1 —
v2/c®)t = A, so we obtain

¥ In effect we attempted to investigate this in earlier
work,? constructing from L(r;, t;, £;, - - - ) a unique energy inte-
gral E(r;, t;, £, -+ -) and proposing the algorithm H(r;, p;) =
E = E(r;, (ry, H), ((x;; H), H), - - ) for the computation of H
in powers of ¢ and of 1/c% The algorithm seems clearly a
necessary condition for H, but the proof of its sufficiency
(i. e., of its power to provide H that generates motions in
agreement with the primitive equations of motion) has
remained undemonstrable. A somewhat similar attempt,
working only up to a maximum of 1/c* terms in a joint
Lagrangian based on purely retarded interactions and re-
ducing the Lagrangian directly, was made by Golubenkov
and Smorodinski [reported in L. Landau and E. Lifshitz,
The Classical Theory of Fields (Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1951)]; but a direct
calculation shows that the primitive equations of motion are
not properly comprehended.
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Dz’ (1 — v, v/ = = F
1.27 1° Ve = " I,
2p Ic m, )
221 _ _€
2p'c29 (1 Vl'vz/c )7' = My F27

as the complete formal dynamies of a pair of inter-acting charges.
Continuing formally we can reduce Eq. (7) to Newtonian order by observing that the higher-order

derivatives in F, can be displayed as

B e _ ( oo, 0 9 _a_) ( 3 9 1)( 9 i) K3
ar, Dy =\w. gy @D Foee A v, T or; Viaw. T Ve, TV ar./\""av, T Vi'ar.) or,
p-Z sz — ( (2p+1) + C + v . v',_a_)Dz}’ __a_

av; “oviP tor, | ar/ ' oavy’

and by then introducing into v;= (¢/m;)F;(¥;, ¥;,- - -)
the derivatives ¥; = (¢/m,)F;, ¥ = D(¢/m;)F,, ---
and ordering terms according to powers of e.

Let us see in the opening terms how this proceeds.
In (¢/m;)F; to first order in ¢ we must retain only
the part (v,-9/0r,)*® of D? because terms in V,,
v;, --- will be proportional to ¢ owing to ¥,
(¢/m;)F,. It is easy to show that

(v;-9/0r.) "t
= @p — 1f@p — 3 -
and thence

(v;-9/0r)” -8/9r,)”
Z 2plc*®

V(v.xf)*/r, (¢ =1/r),

(I — vy, /)

1 =vw/
Tl — W xA /)

whereupon in first approximation

. _€ _ 2 w2 /2N 9 _ i)
v, = m (I — wvv /(A — vi/c%) (D v, ~ or,
1 - vl‘V2/C 5
X T = @ x PP = my 1ol V),
) ®
_ ey _ww\, _uy( 9 _ i)
V2 = m, (I e )(1 cz> (D v, 4,

1 —v,-v,/c°
r(l — (v, x#)*/c )*

The physical meaning is transjparent: we have merely
reckoned the 4-potential (A°, ®) in Eq. (3) for e.’s
motion due to fields from e; as

F20(rk; Vi)

X

: _ ev;/c e; )
@9 = (r[l — (v; x??/} [l — (v; x?*/CT
©
viz., as fields from e; in wniform motion,' ¥; = 0.

10 See for instance M. Abraham and R. Becker, Theorie
der Elekirizitit II (B. G. Teubner, Leipzig and Berlin, 1933).

The forces in Eq. (8) are simply Lorentz forces on
each charge due to the other charge’s uniform motion,

i} (i}
€<D av,- - 6r.~>

= e..{E (at 7, from j) + ‘;— xH (at 7, from ,)},

1 — v,-v, /¢
[l — (v; x#?/c*]

where D is v,-9/0r, + v,-9/0r, in the present order
of approximation.

To go to the next order in ¢ we need D?*, D¥**
up to terms linear in ¥,, v;, ---; a computation by
induetion gives, abbreviating d; = v,-9/dr;,

&+ 3T
i=0

(=g 2

ray = ("7 1) e
%) i Dy 4y D g
+<l>d1: 6V.~d'.+ +av,"

Then the equations of motion become

€ ez < a a )
¥ = oo Fuln, V) + e D 5 — e
® 2p—1 voev
xzzwwwww@w?%M
p=0 1=0
¢ 3
" F2°(r"’ v = s (D B arz)
- 2,— v .v
Zzwwmﬂm@—}Wm,
p=0 1=0

in which the right-hand members depend only on

1., Vi, and d = d, + d,. The reduction process re-

states the high-order differentiation in terms of just

the elementary d;. Continuing in this cumbersome

but stepwise well-defined fashion, we come formally

to express electrodynamics as a Newtonian system
v, = Z € fin(Te, Vi),
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where already in the opening term curved invariant
world-lines ¥, = (¢/m;)F;, are being generated out
of the initially straight ones v; = 0.

This “solving” of the higher-order equations of
motion by expansion in powers of a parameter
attached to the higher derivatives amounts to seek-
ing out of the large set of motions, parametrized
by a large number of initial conditions r,(0), £.(0),
£.(0), --- , some very particular small subset pa-
rametrized by just r,(0), £.{(0), whose distinguishing
feature is their analytic contiguity to free-particle
motions (¢ — 0). This contiguity seems physically
compelling; if it is adopted as a physical require-
ment, then electrodynamics on its original field-
theoretical basis [or its action-at-a-distance transla-
tion via Eq. (4)] must be counted grossly over-
complete. The high derivatives are being taken to
signify “corrections’” to lower-order motions, instead
of being allowed the power to generate new classes
of motions. The situation is not unlike that occurring
for ordinary radiatively damped motion, e.g.,
—2(6%/c*) % + mi& = —aV/dz, where only two-thirds
of the motions are admissable and one-third of them
are improper, being marked by essential singular
behavior as ¢ — 0; not until a rule is given for the
right motion and placed in force theoretically can
such an equation of motion be considered satis-
factory.

Nothing can be said at this point about con-
vergence of the procedure we have sketched. The
primary aim has been just to show that it is not
ruled out that physically significant particle inter-
actions, perhaps the only significant ones, may be
fully comprehensible in covariant Newtonian-order
equations of motion, giving invariant world-lines,
despite the traditional bias of field physics that an
infinite number of degrees of freedom is inherent in
the problem; and particularly to show in a concrete
case, Eqgs. (8), how such equations of motion get
developed for purposes of discussing in how far an
Hamiltonian statement of them is possible—it being
immaterial to this purpose that Eqs. (8) are only
approximative to the whole eleetrodynamics.

Before turning to the main question of Hamil-
tonians, a few sidepoints may be noticed.

(i) Another formal way to develop second-order
equations of motion out of Eqs. (7) is to order the
right-hand members by powers of 1/¢%,
rﬁz»));

1
\ Z(Fg-'n(fn VT, by,

nw=0

EDWARD H. KERNER

and to expand Vv, a8 2 yu(Ty, Vi)/c’", beginning
with y;; = the Coulomb interaction, g, and com-
puting the higher derivatives needed in g,, from
derivatives of the already determined ¥; =
D21 . (ti, Vi)/c*. The opening terms are, for
instance

vio = m_e (s = r;) ’

62 (r i ri)

mymg

—_ € {V (l“— ’)(V ')+1(V. v)(l‘ )

Y &

m.

-+ Verz @ —r)+ g'Er.s—r)— (r; — ri)}-

It is now the motions that are contiguous, for
¢ — o, to the ‘“unperturbed” Kepler motions,
instead of to free-particle motions, that are being
built up. Lorentz covariance is sacrificed in the in-
dividual terms, but this is compensated to some
extent by their relative ease of computation and
by their containing all orders of the interaction
strength ¢ (y:, = polynomial in ¢). The expansion
plainly exhibits in fact the explicit entry of the
charge radii e?/m.c’ into the dynamics, hinting at
how convergence of the series may be controlled,
in contrast to the position in field theory where this
fundamental length is quickly seen to exist and then
sits uneasily in the background playing some im-
portant but unknown role. It is interesting in this
connection to note the distinction that can be made
between the non-relativistic limit (c — <) of electro-
dynamies, governed completely by the Coulomb in-
teraction, and the static lemit (v — 0), governed by
elr; —1;) € (t—r)

A\ 3 + z
: ma MMl r

(ii) It is visible from Eqgs. (8) that the occurrence
of both (1 — v3/c®)and (1 — (v; x #)?/c*)} in Fyy
will not be altered in the development of further
terms in the e-expansion, since these grow out of
the rational operation of differentiation. There is
therefore no reason of principle to discountenance
orbits for which both |v,] > ¢ and |v5] > ¢. Such
orbits are plainly disjoint, classically, from orbits
with |v,] < ¢;if initially |v,(0)| < ¢, then apparently
at no later time can |v;(f)] > ¢ and conversely—the
light barrier |v;| = ¢ is seemingly impassable. In
quantum theory the situation can be possibly ex-
pected to be otherwise. For quantally, an entire
ensemble of classical motions must always be sur-
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veyed, owing to the finiteness of Planck’s constant k,
which defines an irreducible volume in phase space
whose boundaries may not in general be set ahead
of time to exclude a classically forbidden region;
this is at any rate what lies back of the so charac-
teristically quantum phenomenon of barrier penetra-
tion in ordinary nonrelativistic potential problems,
where classically disjoint motions necessarily have
to be looked at together and be allowed to overlap.
It is just the intimacy of the codetermination of
motions of only the sources of the field afforded
in the action-at-a-distance view, that brings into
evidence the extended class of motions hidden in
field theory behind the mathematically neat but
physically clumsy coneeptualization of sources emit-
ting and absorbing fields. The meaning, if any,
of the extended set of motions is difficult to assess
before a program of Hamiltonization and quantiza-
tion is formulated, but already at the outset there
appears from Eq. (2) a curious and probably essential
ambiguity of any fundamental time-development
operator as to its Hermiticity; to span all possible
motions the operator would seem to have to be
capable of sometimes being Hermitian and some-
times anti-Hermitian, or of possessing in some fagh-~
ion an eigenspectrum with both pure-real and pure-
imaginary sectors. .

(iii) We note finally now a very simple and
natural way to fit gravitation and electrodynamics
together, similar to that previously suggested’ in the
context to Bq. (2). This amounts to the recognition
that the physically relevant motions left over when
¢ — 0 are not the simple unaccelerated motions
used in Eq. (8), but the motions of gravitating mass
points in the general relativistic sense of Einstein,
Infeld, and Hoffman (EIH)." To thus accredit
gravitation as the fundament of all other motions
it suffices, as a physical hypothesis, to place

€
¥ = Fu(r, vi) + 'm—l F,,

V2 = Falri, v:) + T"i' F,,

where (a) F; are the gravitational accelerations
computed from the EIH action-at-a-distance

Lagrangian

v4

£ = %mlv? + ¥m, 'c—;

11, Infeld and J. Plebanski, Motion and Relativity (Per-
gamon Press, Inc., New York, 1960); V. Fock, The Th of
Space, Time, and Gravitation (Pergamon Press, Inc., New
York, 1959).
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(v = constant of gravitation); and (b) the electro-
dynamic derivatives in F;, D?*, are computed over
the gravitational motion as ‘“unperturbed motion.”
The final equations of motion are series of powers
in v and in ¢ containing in the mixed terms the
coupling of the two physical phenomena. The hy-
pothesis joining gravitation and electrodynamics is
therefore not so much a simple addition of gravita-
tional and electromagnetic effects (in any case com-
pulsory in nonrelativistic limit) as it is a complete
specification of the latter through the primacy of
the former to tell what is the nature of motion in
the first place; the electrodynamics, in short, sits
as & contingency on any prior description of the
motion of uncharged particles.

III. THE LIE-KONIGS THEOREM

We now take from Sec. II the example, Egs. (8),
of equations of motion describing relativistic forces
up to order e A further characteristic e-structure
which must eventually enter the forces can be seen
by reckoning D as the full derivative v;-8/8v; + d
in F,, instead of the truncated d used previously
in securing the expansion in e [In fact all terms
in ¥; occurring in the differentiations in F; in Eq.
(7) should properly be separated out and considered
to be inertia-like on the same footing as m,¥;.] The
equations of motion are then

- & 9 A
i = m; A‘{("" av; + d) {1l — (v; xf)?/)F
B (1~ vv/e) }

+ ar. [l — (v; xf)* /)" . (10)
and stem from the variational principles, Egs. (6),
in which enter the four-vectors (9) with v; = v,(f)
instead of constant v;. It is just the use of separate
covariant action principles that eventually, upon the
full computation of potentials here only approx-
imated, must guarantee invariance of the individual
world-lines. Calling Q; the dyadie,

9 9

av [l — (v; xA)*/c]}
_ (1 = @ xH /N — (v, — v,-ivh)/c
- il — (v; xfP /ST !

Q;E
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Eqgs. (10) are
V, + (G/mlcz)Al' QQ'VQ = (E/ml)Flo(rk, Vl,),
Vo + (¢/ mzcz)Az' v, = (¢/m3)Fao(rs, Vi),

or in decoupled form,

2 -1
¥ = (I - m,:nzc4 A1'92'A2'91)
€ ez ~
X (_ﬂTL: FlO - mlmzcz A1'92'F20>;

@11

2 -1
v2 = (I - 7n1'€m,204 Ag' QI.AI’ 92)

2
X (E:’ Fy — K;n; Az’Ql‘F10>-

These forces are some physically significant parts
of the whole Newtonian-reduced electrodynamic
forces, and illustrate something of the order of
complexity of the latter, well beyond that of the F,,.

Let us consider now quite generally the problem
of reducing a system of first-order differential
equations

&= Xz, -, 2a) G=1,--- ) 1) (12)

to Hamiltonian form (we use z; for the time being
for general variables, not to be confused with dy-
namical coordinates). First, we can force Eqs. (12)
to result from a variational principle

ty
afh J(zs, &) dt = 0

only if J is linear in the #,,

J = 2 Uda)s: — W), 13)

requiring then

o oV, oW
; (ax; oz, /o + oz, 0.

To invert for #, and equate to X,, we must have
the skew-symmetric U,,; — Uj,; nonsingular, which
rules out odd-order systems. Then for n even, as-
suming U;,; — U, , is not “accidentally” singular,
U, and W have to satisfy

3, U, _ _aWw
12 Xy ox, Xi ., o (14)
Writing
U, _ d ) ¢
Xt G:Ck - 82:,, (UIXI) U‘ sz !

the last step is, in a transparent notation,

EDWARD H. KERNER

X°V,,U + X'U = Vz(X'U - W))
(X)-’i = aX,-/a.’L‘;, U= (UU ) Un)°

The determination of W, U can be effected separately
by requiring W = X-U within an additive term
having vanishing gradient, when U is fixed by

X‘V.tU + X'U = O.

This is the usual condition® for [ U-éx to be an
integral invariant (time independent) for x = X.
Solving for 0U,/dz,, we obtain the Kowalewskian
system of partial differential equations for U,

aUk/axl = _Xfl{(X'V)'Uk + X}:zUz}
(X-V)Y = X-V — X, §/dm,),

which is completely integrable and in general will
permit nonsingular Uy, — U, ;.

It is therefore always possible to have an action
principle lie back of x = X. When we place n = 2m,
the action integral may be written

fUldxl+ cor F Uy dom — W dL.

And now we can seek independent functions P,(z),
Q.x) ( =1, ---, m) of the original variables that
admit

U1dx1+"‘+U2mdxzm=P1dQ1+"' +Pmde-

The reduction is always possible (Pfaff’s problem'?),
placing the original variational principle and equa-
tions of motion in Hamiltonian form,

af (iP;Q; - H) dt =0,
HP,Q) = WP, Q); @ = oH/3P,,

P, = —8H/3Q,.
This constitutes the Lie~Kénigs Theorem.

A direct proof of the existence of P, @, without
relying on the theory of Pfaffians, is readily form-
ulated by simply introducing a change of variables
z; = w;(yy, *++ , Y.) and writing J as

J = Ek: (Z U; 8w:/0y)ge — W.

Then putting X, U, 8w:/3y; = Y+, or 0 for odd k
or even k (so that odd or even y are @ or P above),
an analysis shows y:(z) to be determined from a
Kowalewskian system.

For any Newtonian-order equations of motion like
Eqgs. (8) or (11) broken down as

12 A, R. Forsyth, Theory of Differential Equations Dover
Publications, Inc., New York, 1959), Vol. 1. g
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tl =V, l.‘2 =V,
¥, = Fi(t, vi), v, = Fy(ri, vi),

we are assured by the Lie-Kénigs theorem of a
Hamiltonian representation. What we are not at
all assured of is such a representation with a pre-
selection of canonical coordinates Q. Suppose indeed
we try to force @, = z,, s = 1 --- 6, using the
index s to enumerate particle coordinates x,, y,, 2y,
Za, Ya, 2o. This means in Eq. (13)

J =U(z,v)i, + 039, — W(z,v),

with U,(z, v) the presumed canonical mate to z,
(summation on s understood), and from Eq. (14),

a a
(v, ax. + F, 'a_v'>Uk == GZ/axk,

(15)
U), = BZ/avk, (Z = v,U, - W),
or
d 9\ dZ oZ
(”' o, T av.) o, oz 16)

That is, we are asking simply for the existence of a
Lagrangian Z(z, v) in back of the primitive equations
of motion in order to guarantee a Hamiltonian form-
ulation of them by what comes down to be the
customary route.

We can now phrase the whole question of the
Hamiltonian—Lorentzian compatibility in the follow-
ing terms: when the F, are restricted to providing
Lorentz-invariant equations of motion ¢, = F,
describing invariant world-lines, are the partial-
differential systems (15) or (16)—necessary and
sufficient for an Hamiltonian scheme with position
a canonical variable,—integrable?

The integrability conditions, framed as differential
conditions on F,, fall within the algebraic theory of
differential equations.'® Equations (15) for instance
are a so called orthonomic system when cotes are
assigned in Riquier’s way to the unknowns so as
to order them U,, Z and to the independent variables
so as to order them v,; z, and the system is written

6U;,/6v1=* (k=11“')6)’

BZ/GU;, * (k = 1; et )6)}

18], F. Ritt, Differential Eguations from the Algebraic
Standpoint (American Mathematical Society Colloquium Pub-
lications, New York, 1932); J. M. Thomas, Ann. Math. 30,
285 (1929); 35, 306 (1934); C. Riquier, Les Systémes d’Equa-~
tions auz Dérivées Partielles (Gauthier-Villars, Paris, 1910).
The integrability conditions can also be formulated from
Helmholtz’s theorem [P. Havas, Nuovo Cimento Suppl. 5,
363 (1957)] on the conditions for any equations Gi(x;, &, #) =
0 to stem from a Lagrangian; but it is essential that G; be
taken as a linear combination 8:,(£, — Fu(z, £)) with 8, =
Bz, %), |8] # O, rather than any single &, — F,.

i
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with right-hand members, *, involving only para-
metric derivatives. The explicit statement of all the
integrability conditions requires appreciable analyt-
ical labor, but it quickly becomes apparent that they
speak toward only highly particularized F,—it can
be doubted on sight (see below) whether anything
like the complex F, of Eq. (8) (not to say something
like those of Eq. (11)) eould satisfy them in a con-
sistently e-ordered computation. There is, above all,
the zero-interaction theorem to tell without am-
biguity that the integrability conditions cannot be
met: there is no Hamiltonian theory of motion with
position being canonical coordinate.

A closer view of what are at least necessary
conditions for integrability may be obtained as
follows: By Eqs (15) we have
8’z

or the matrix (U),; = 9U,/dv, must be symmetric.
Differentiating the first of Eqgs. (15) with respect
to v; gives

U; + F,.U,, + AU, = U;
in the notation
A=v,9d/0x, + F, 8/0v,,
Ui = oU,/dx,, F. = oF,/on,

(that is, A is a time derivative with the motion
9, = F, impressed into it). Reversing k and !/ and
subtracting and also adding the result to Eq. (17)
produces

7

FllUka - FakUll = 2(U,l: - Uli);
AUkl = _%(FIIUIC] + FlkUh)-
Now differentiating with respect to z;,

oF, aU, U, 8Z
dz; v, oz, oz, 9z, '

(18)

and reversing k and ! and subtracting,
AU — U) = F.Up, — FIUL,
(F: = 9F,/ox)).
We therefore find, using Egs. (18) and (19),
AF. U, — F,.UL) = 2(F.U., — FU.,).

The left-hand member here is, using Eq. (18) for
AUy,

(19)

F:zUka - %Fal(FhUkt + FtkUut)
—F:kUlu + %Fak(FnUu + FHUH)
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(summation on ¢ as well as s; !, = AF,;) in which
the terms

% N(FIEFH - llFtk)
collectively contribute nothing, whence
(Fiy — 2F, — 3F.F.)U,,
= (F, — 2F: — 3F, F.)U,,.

Defining now

(Fhy = =% 0F:/ov,, (20)
@ = —2{AF) + 0F,/3z: + (F)ui},
we have altogether the matrix equations
uU=0 (Ul =0), 1)
AU = U’ = UF + FU, 22
QU = UG, (23)

viz., U must be nonsingular and symmetric and
simultaneously must satisfy the differential equa-
tion (22) and the algebraic equation (23).

To see what this entails, apply A to Eq. (23),

G'U + QU = U'G + UG,
or by Eq. (22)
@ + GF — FQU = UG + FG — GF).

By defining the operator « through
ad = AA + AF — FA,

the latter equation is

@)U = U@

and then repeating the operation A successively,
@OV = UCR'G),
@*OU = U'G)

This displays U as having to satisfy an infinite
chain of algebraic equations.
More simply, we notice a has the derivative

property

A Ay = A\ AL+ AJA, + A AF — FAA,

= A (A} + AF — FA,)+ (Al + A F — FA)A,
= Ai(ad:) + (24,)A,

so0 that « applied to Eq. (23) provides

GUF + F) =UF + PG 24

EDWARD H. KERNER

after using
aU=U"+UF — FU = UF + F).

Thereupon, from Eq. (24), placing QU = UG in
the left member, we obtain

UF +HG - GF +F] =o0.
Owing to U being nonsingular, the [ ] must vanish or
GF + F) = (F + F)G.

That is, in order for position to be canonical in an
Hamiltonian formulation of prescribed Newionian-
order equations of motion o, = F,(z,, v:), tt 18 necessary
that the functional matrices G' and the symmetric-part-
of-F [as defined by Eq. (20)] commudte.

Returning now necessarily to the Lie-Kénigs view-
point in which not x, » but Q(z, v), P(z, v) are
canonical, some difficulties in any attempt at quan-
tization immediately come up: @, P are non-unique
beyond simply contact transformation; even if @ in
nonrelativistic limit is the position variable (a re-
quirement that could be expected to help in the
question of uniqueness), one cannot expect to phrase
commutation rules straightforwardly from classical
Poisson-bracket relations. Rather @;, @; could prob-
ably not be expected to commute, nor P,, P;, nor
could @;, P; be expected to have any simple com-
mutator; the commutation rules would seem them-
selves to have to have a dynamical content or de-
pendence which is absent in one-particle relativistic
mechanics or in many-particle nonrelativistic me-
chanics.

IV. CONCLUSION

Let us summarize the main points of the present
discussion and indicate some of the questions it
raises.

Using electrodynamics as a base, covariant equa-
tions of motion of particles travelling along in-
variant curves can be formally produced. These
cannot be fitted into the so-called relativistic gen-
erator formalism of Dirae, which disallows world-line
invariance excepting trivally straight world lines.
Yet the Lie-Konigs theorem guarantees an Hamil-
tonian statement of motion, but not one as in the
Dirac formalism for which position is a canonical
coordinate. The classical family of motions is wider
(admitting super-light velocities) than is customarily
considered, and raises questions as to their possible
significance in quantum theory though not in purely
classical theory.

One may conjecture that if, as seems to be the
case, the relativistic generator formalism cannot cope
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with electrodynamies, then it is perhaps too restric-
tive altogether as a general tool in relativistic many-
particle theory. To discard world-line invariance is
in any case a drastic step, whose consequences it
nonetheless remains important to understand, but
it is not any necessary step. A rather general way,
apart from Dirac’s formalism, for measuring any
particle dynamics, covariant or otherwise, for an
Hamiltonian fitting preserving position as canonical,
lies in the application of the integrability conditions
for a Lagrangian encompassing the dynamics.

The convergence of the formal expansions in e
or 1/¢* for Newtonian-order equations of motion in
electrodynamics is entirely an open question. One
can see, though, that the original infinite-order equa-
tions of motion have the character of differential-
difference equations; in other, simpler contexts such
- equations do admit an order-reduction of the type
that has been introduced. »

Finally, the outstanding question of principle is:
granting a covariant Hamiltonian formulation of par-
ticle dynamics that has to exclude position as canon-
ical, what may be the rules for quantization? It is
enough to broach the question, for instance asking
for universal (?) commutation rules and the en-
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compassment of all classical orbits in a correspond-
ence limit, to see how mutually centrifugal appear
the requirements of relativity and quantum theory,
and how particular must be their concordance, if
there be any. Moreover the obscurity of the rel-
ativistic quantum mechanics of interacting particles
may be portraying a corresponding obscurity even
for noninteracting particles, insofar as the mechanics
in both cases should have a common basis; it is not
clear, for example, that canonical coordinates Q(z, v),
suited to interaction, necessarily degenerate to just
position coordinates z upon removal of interaction,
even though = @ priori may certainly be taken to be
canonical for free particles. Like the grin of the
Cheshire cat, interaction might be leaving its impress
when it is not there, so to say preparing the particles
to interact, and also preparing them differently for
different interactions.
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HE question of the existence of finite, non-

perturbative solutions of the equations of Quan-
tum Electrodynamics has recently been raised by
Johnson, Baker, and Willey.! These authors have
suggested an approximation scheme which is char-
acterized by the properties that: (i) the bare mass
of the electron is zero, (ii) the matrix elements attain
their “correct’’ values at high energies, and that
(iii) the scheme is formulated in the Landau gauge.

. 1X. Johnson, M, Baker, and R. Willey, Phys. Rev. Letters
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Those authors have further shown that their model
admits of finite solutions and have obtained the
asymptotic form of the electron propagator valid
for large values of energy. This model was sub-~
sequently studied by Maris, Herscovitz, and Jacob®
who obtained, under an additional simplifying as-
sumption (see below), an explicit solution for the
electron propagator. This form was found to be con-
sistent with the general requirements which a prop-~

* Th, Maris, V. Herscovitz, and G. Jacob, Phys. Rev.
Letters 12, 313 (1964). . .
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agator of a local field theory is supposed to satisfy,
for instance, the propagator was more singular on
the light cone than the corresponding free-field prop-
agator in accordance with Lehman’s theorem. The
purpose of the present note is to point out that a
method developed previously by Green® in connec-
tion with the Bethe—Saltpeter equation, and which
consists in transforming the relevant integral equa-
tion to a differential equation by the application
of the d’Alembertian operator, can be applied to
the present model. We start with the Dyson equation
for the electron propagator in the approximation
suggested by Johnson ef al.' and transform it into
a second-order, nonlinear differential equation® in
momentum space by the application of Green’s
method. This differential equation [Eq. (5) of text]
is still too difficult to solve. However, solutions may
be obtained under additional simplifying assump-
tions which are valid in limited regions of energy.
In this paper we describe a few such cases. We ob-
tain, in particular, the solutions obtained in Refs. 1
and 2. We also discuss the solutions near the origin
and around the mass shell.

Let us consider the Dyson equation for the fermion
propagator in the approximation suggested in Ref. 1,

’S—(l_’T)' = i‘Yupu - 7’4_:,5 f 7#S(k)7-
o= R, d%
X [5"' P ] @ — b — i

1)

In the above, S(p) is the Fermion propagator and
a the fine-structure constant. It is actually more
convenient to study the mass operator m defined as

87(p) = p, + m@). @

From (1) and (2) the integral equation for m(p®)
follows:

d'k
(@ — k) — i
)]

Equation (3) is our starting point. We will now
transform this equation into a differential equation
by the application of Green’s method. This is done
as follows: One first analytically continues Eq. (3)
into an Euclidean region of momenta by Wick’s®

3 H. S. Green, Phys. Rev. 97, 540 (1955).

* Use of (nonlinear) differential equations, to study dila-
tionally invariant electrodynamics, has been previously made
by R. Haag and Th. Maris, Phys. Rev. 132, 2325 (1963). Our

method is closely analogous to that of these authors.
8 G. C. Wick, Phys. Rev. 96, 1124 (1954).

2 m(k’)
mp) = — fm(k2)+k2—z‘e'

3. K. BOSE AND S. N. BISWAS

procedure of rotation of the contour in £° plane;
one then applies the d’Alembartian operator [J° on
both sides of this equation. One obtains thus

2 o 3_01_ ‘m(kz)
o) = =i 3% | e T F B e p
B mE) gy
r m2(k2) + kz 6 (p k) d IC
_da__m@) )
™ m@)+p’
Noticing that (because of Lorentz invariance) only

the “S-wave part” of the left-hand side of Eq. (4)
survives, we obtain the desired differential equation

5 d'k

; O,

dg’i+2 Ay =0 ®)
We have, in the above, introduced the notation
8 = p® and A = (3a)/4wr. Equation (5), being of
second order, needs two boundary conditions for the
specification of its solutions. Both of these follow
from the integral equation (3). These are (i) m(S)
vanishes at infinity, § — « and (ii) m(S) is bounded
at origin, 8 = 0. Differential equation (5), together
with these boundary conditions, is completely equiv-
alent tothe integral equation (3). We also notice
that Eq. (5) is dilationally invariant, i.e., invariant
under the transformation

S = I8,

Hence if m(S) is a solution, so is im(I*S). This is
an immediate consequence of the hypothesis of
vanishing bare mass. This further shows that Eq. (5)
really has an infinity of solutions with an arbitrary
scale. To remove this arbitrariness one further puts
the requirement that S(p) should have a pole at
the physical mass m,, 1.e., the mass operator should
satisfy the condition

m — Im. (6)

m(—my) = m,. @)

With these preliminary remarks let us now pass on
to study the solutions of our differential equation.

As already stated earlier, Eq. (5) is still too dif-
ficult to solve (although a numerical solution might
be feasible). We are, therefore, led to search for
further approximations on Eq. (5) so as to simplify
its structure. But first we note that the asymptotic
form of the solution at high energies can be obtained
in a straightforward manner. In view of the boundary
condition, Eq. (5) simplifies in the asymptotic region
into

5 = 0. (8

+2—+ 3

d82
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Equation (8) has two solutions, the one satisfying
the proper boundary condition is given by

m(S) = S—;n*u—m*l; S— o, (g)

one® of which [viz. the one with negative sign before
the square root (1 — 4A)}] agrees with the solution
obtained previously by Johnson et al." Solution (9)
is nonanalytic in the coupling constant A around
A = 1. It may be recalled in this connection that
on the basis of intuitive reasoning one expects’ quan-
tum electrodynamics to be singular around A = 0.
We further notice that (9) puts a restriction on A,
namely that this solution exists for A satisfying the
condition 0 < A < 1. The corresponding bounds
for the fine-structure constant is 0 < a < 3.

The main difficulty in solving Eq. (5) is clearly
its nonlinear character. We have seen above that
because of the boundary condition, the nonlinear
term disappears in the asymptotic region. In the
general case one could think of an approximation
to linearize equation (5). This is achieved by re-
placing m*(S) occuring in the denominator of the
nonlinear term in (5) by m?. Equation (5) is thus
replaced by

m —
m+ 8

d’m dm
SdS2+2dS + A 0. (10)
Equation (10) is a standard hypergeometric equation
and its solution satisfying the proper boundary con-
ditions can be immediately written down. For S < mj}
this is given by

o) = mar(-F (5

142 1—» _ﬁ_)
X( 2 0 3 0% mi/’

1D

In the above » = (1 — 4\)! and I' is the usual
gamma function. Solution (11) was previously de-
rived by Maris et al.® who have discussed its physical
content. Once again this solution gives the bounds
on the coupling constant 0 < X < { which was
obtained from the asymptotic solution (9). Further
this solution is consistent with Lehman’s theorem
regarding the degree of singularity on the light cone.
The ease with which solution (11) is obtained im-
mediately shows us the power of the present method
and in particular, the advantage in working with
differential equations in momentum space rather

¢ This lack of uniqueness of the solution may be due to
our use of the boundary condition as boundedness conditions.
‘We have not been able to find out & more precise form of the
boundary conditions.

7 F. J. Dyson, Phys. Rev. 85, 631 (1952).
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than those in coordinate space as is done, for in-
stance, in Ref. 2.

Let us now consider the behavior of Eq. (5) near
the origin, 8§ = 0. It is clear that in this region
the term Sd*m/dS® is negligible provided only that
d*m/dS? is bounded. On the basis of general con-
sideration involving the analyticity of m(S) in a
cut plane one expects m(S) to be analytic in the
neighborhood of the origin and hence to have a
bounded second derivative. However, this condition
is by no means guaranteed by Eq. (5). Therefore,
we conclude that to the extent one can consistently
obtain a solution for 7 (S) which possesses a bounded
second derivative at § = 0, One can throw away
the term Sd°m/dS® while discussing the behavior
of Eq. (5) near the origin. Thus Eq. (5) simplifies to

2dm/dS + Am/(m® + 8) = 0. (12)
Let us now consider the transformation
& = S/m. (13)
Equation (12) reduces to
dm/dz + Iamiem/(m* + €md) = 0. (14)
A further transformation
e*m = f (15)
brings Eq. (14) into the form
%+%f+%ff—z%=o. (16)
From (16) one immediately obtains
= af (P + m) an

2 - JIIF+ mid+ NT

The integration in (17) is elementary. Performing
this and transforming back to the original variables,
we obtain

mz/k[mz + S(l + }\)] = mfl(u)‘)n\l. (18)

Thus the solutions of the nonlinear differential equa-
tion (12) are those which satisfy Eq. (18). For
specified values of A, Eq. (18) can be solved. For
instance for A = O, the solution simply reads
m(S) = m, so that the propagator S(p) reduces
to a free propagator (see below). For A = 1, the
solution of (18) has the form

m(S) = {(§* + m)} — 8P, (19)

so that the condition that m(S) be analytic around
8 = 0 is consistently satisfied. However for A = 2,
Eq. (18) reduces to a cubic equation whose solution
develops a singularity at S = 0. This shows that
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arbitrarily large values of A are not allowed, in the
present theory. In the general case, a numerical
solution of (18) might be feasible.

We will now consider the differential equation (5)
in the neighborhood of the mass shell. In this region,
the term dm/dS is negligible compared to the other
terms. This is because dm/dS is proportional to the
vertex operator A,(p, p)[= T, — ¥,], which vanishes

on the mass shell. Thus Eq. (5) reduces to
Sd®m/dS® + Am/(m®> + 8) = 0. (20)

Using the variables z and f introduced -earlier,
Eq. (20) becomes

d’f/dz’ — 3 + Amif/(f + m)) = 0. @1
We now define
df/dz = p, (22)
8o that Eq. (21) reduces to
pdp/df = —flmi/(f + mi) — §l. (23)
Integrating (23), we obtain
p* = if — amilog (1 + f/mj). (24)

using (22) and (24) we obtain the “solution’’ in the
form of a quadrature

- daf
v f Gf — i log (1 + f/m) "

(25)

This is almost as far as we can go; to proceed
further we are forced to mutilate the integral (25).
But first we note that for A = 0, (25) yields
3z = log (f/m,), (26)
so that the corresponding expression for the fermion
propagator is
S@) = @pavu ~— 8/m)™
& (ipave + ma) 7 (27)

Solution (27) shows that in the limit of vanishing
interaction, the fermion behaves like a free particle,
with its physical mass, which is assumed to be non-
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zero. This is an interesting situation whose implica-
tion is not very clear to the present authors. One
might think that in a theory, such as the present
one, in which the entire mass of the electron is
supposed to be of electromagnetic origin, the limit
of vanishing (electromagnetic) interaction would
yield a massless electron. This is however, clearly
not so in the present case, unless m, is identically
zero, in which case the entire basis of the present
scheme collapses. Since it has not been yet shown
rigorously that m, is indeed nonzero, we feel that
this whole question is completely open. Let us now
go back to Eq. (25). We have not succeeded in
performing the integral in the general case. We,
therefore, arbitrarily expand the logarithm and re-
tain only the first two terms. We obtain thus

~ df
v f BGFf — M + IN/mi]
=2(1 — 4
% log (1 — 4\ 4+ 2f/m)t — (1 — )} (28)

(1 — A+ 2F/m)' + 1 — Y
whence we obtain finally

_§_ _ {[1 — 4\ 4+ 2)\m2/8]’ _ (1 _ 4)\)}}(1-4»-'
m; [1 —4x 4+ 2)\m2/S]§ Fa- 4)\)1) .

(29)

Once again, the ‘“‘solution” turns out to be non-
analytic in A around A = 1 and the same bounds
for A, viz. 0 < A < 4, obtains.

Finally it should be emphasised that the original
integral equation (3) is meaningful only for large
S, where the corresponding differential equation (5)
linearizes. The solutions of (5) around § = 0 and
near the mass shell may, therefore, be physically
unreliable. In particular, Eq. (3) does not include
the correct perturbation graphs near the mass shell,
nevertheless, we have discussed these solutions for
the sake of completeness and also because Eq. (5)
mathematically simplifies in these regions.

We are thankful to Professor R. C. Majumdar
for his interest in the present work.
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The effect of a rigid circular cylinder, wholly immersed within and lying parallel to the free surface
of an incompressible and inviscid fluid, on straight-crested surface waves passing overhead is in-
vestigated. A mode of analysis is developed, on the hypotheses of small amplitude and time-~periodie
fluid motions, that encompasses all directions of incidence of the primary wave; and is used to
extend results previously obtained in the case of normal incidence. It is shown, in particular, that the
absence of surface-wave reflection at normal incidence gives way to a partial reflection for other
primary directions, which in turn verges on completeness as the direction of the incoming wave be-
comes more closely aligned with that of the cylinder axis.

1. INTRODUCTION

HE remarkable conclusion, arrived at originally

by Dean (1948)" and subsequently confirmed by
Ursell (1950)° and Ogilvie (1963)° is well known—
namely, that surface waves of small amplitude ex-
perience no reflection when they pass over, in a
transverse heading, a submerged and fixed circular
cylinder whose axis lies parallel to the mean free
surface. However, the circumstances that delimit its
validity of this statement are as yet incompletely
specified. To assist with the latter appraisal, a gen-
eralization of the problem treated by these authors
is pursued here, namely by relinquishing the assump-
tion of normal incidence, and details of the resulting
wave complex are obtained in a manner that em-
braces uniformly all primary directions from the
broadside on to a near grazing one; this generaliza-
tion is effected by means of a formulation and mode
of analysis which differs from those previously em-
ployed (and partly incapable of the requisite mod-
ification, as will be appreciated in due course).

The setting for our investigation is a heavy,
frictionless, incompressible fluid of unbounded depth
and lateral extension, having a plane free surface
in the state of equilibrium. A circular and impen-
etrable cylinder of radius a is assumed to be fully
immersed in the fluid, with its (infinitely elongated)
axis at the fixed depth A(> a) below the free surface.
If a coordinate origin is located on the cylinder (or
2) axis and the z, y axes are oriented as shown in
the plane section at right angles thereto (Fig. 1),
the level of the undisturbed free surface becomes

= —h.

Y The spectrum of time-periodie, irrotational mo-

* This work was supported in part by Office of Naval
Research Contract Nonr-225(74) at Stanford University.

1W. R, Dean, Proc. Cambridge Phil. Soc. 44, 483 21948).

* F, Ursell, Proc. Cambridge Phil. Soc. 46, 141, 153 (1950).
3 T. F. Ogilvie, J. Fluid Mech. 16, 451 (1963).

\

y
Fia. 1. Trace of submerged cylinder.

tions of the fluid includes straight-crested,. small-
amplitude surface waves that can propagate freely
and independently of one another; and it would
be anticipated that any of these surface waves
undergoes scattering in the presence of an obstacle
in the fluid, say the immersed cylinder, as manifest
by a reduction in the amplitude of the wave after
passing over the latter and the concomitant ap-
pearance of a second or reflected wave. Dean ad-
dressed himself to the aspects of this encounter
when the incoming surface wave proceeds at right
angles to the axis of the cylinder, the state of affairs
then being entirely two-dimensional and amenable
to the techniques of complex analysis since the
spatial part of the velocity potential obeys the
Laplace equation. His approach entailed a conformal
mapping of the whole fluid section onto a finite an-
nular domain whose concentric circular boundaries
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refer to the traces of the free and cylinder surfaces
8, C, respectively; and then involved the character-
ization of harmonic functions in this simpler geom-
etry, subject to a linearized free-surface condition
on the image of S and the requirement that the
image of C correspond to a streamline, as befits
a vanishing normal velocity on the rigid-cylinder
contour. It proved feasible to construct (infinite)
sequences of functions individually compatible with
the former condition, though only a finite number
of them were utilized by Dean in securing partial
satisfaction of the streamline condition for the pur-
poses of a numerical calculation; nonetheless, he
was able to infer the absence of any reflected wave
in general, given the aforesaid conditions and the
attendant linear boundary-value-problem framework,
and thus to conclude that the sole effect of the cyl-
inder at large distances therefrom is comprised in a
phrase shift between the incident and transmitted
wave motions.

In a pair of companion papers, Ursell dealt with
the same problem by a more elaborate analysis and
also succeeded in establishing the uniqueness of its
solution for all values of the parameters «a, «h, where
x designates the wavenumber of free-surface motions.
He dispensed with the preliminary mapping, and
gave attention instead to the characterizarion of
arbitrary orders of multipole (line) sources in a fluid
having a free surface, the object being ultimately
to determine what combination of such sources,
placed at the center of the cylinder, is necessary to
achieve the compensation of the normal velocity due
to the primary wave at the cylinder boundary. The
equations for the requisite source strengths are of
an infinite linear nature, and Ursell was able to
draw upon an established theory for discussing their
solution in terms of absolutely convergent infinite
determinants when the values of xa are not small
enough to make a power series solution feasible.
Ogilvie employs a similar basis in his account of the
interaction between surface waves and submerged
cylinders capable of executing definite movements,
the overall patterns of motion continuing to retain
a two-dimensional aspect.

Our approach also relies on the concept of a
source function, but it is only the simple (or fun-
damental) variety that figures therein, as embodied
in the free-surface Green’s function. With the help
of the latter entity, the differential version of any
surface-wave boundary-value problem relating to an
immersed and fixed cylinder may be recast in terms
of an integral equation for the velocity potential on
the cylindrical eontour; this equation is, in fact, an

LEVINE

expression of the boundary condition at the contour,
with the velocity potential measuring the local
strength of a (double) source distribution overlaying
the whole contour and acting so as to compensate
for the nonvanishing contribution of the primary
wave to the normal velocity thereat. If the contour
velocity potential is represented by a Fourier series
(in the angular coordinate ##), the integral equation
allows ready conversion to an infinite linear system
for the expansion coefficients, and with their deter-
mination the problem is formally solved; although
this system differs in form and detail from that
obtained by Ursell, both share a common fitness
for explicit solution when the values of xa are small.

Among the advantages stemming from the employ-
ment of a Green’s function are a compactness of rep-
resentation for all aspects of the fluid motion and
a flexibility in regard to accommodating altered cir-
cumstances of excitation. In particular, it will be seen
how directly the modification is effected should the
primary surface wave approach the cylinder ob-
liquely, without recourse to the construction of a
whole new family of source functions and in contrast
to the difficulties in following up Dean’s mapping
procedure when the behavior of the velocity poten-
tial in any plane at right angles to the cylinder axis
no longer conforms to the Laplace equation. To
bring out the foregoing aspects in detail, we shall
discuss the problems arising out of normal and ob-
lique incidence separately, thus also permitting, in
the former case, a ready comparison with previously
derived results.

2. FORMULATION OF THE SCATTERING
PROBLEM AT NORMAL INCIDENCE

If the time-periodic motions at the surface of,
and within, the incompressible fluid are described
in terms of the velocity potential

®(r, ) = Re {p@e "'}, @

attention may henceforth be focussed on the com-
plex-valued space factor, ¢(r), such that

o) = 0. )
The linearized free surface boundary condition then
takes the form (cf. Fig. 1)

0p/0y +xe =0, y= —h, &)

where
= w'/g @)

and ¢ is the gravitational constant; quiescence at
the remote depths of the fluid, y — «, implies that
the velocity—or gradient of o—vanishes.
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The particular harmonic functions
ez, y) = Aie*i“ﬂ”y y = —h (5)

that comply with the two-dimensional version of
(2) and the conditions at the boundaries of the
fluid, serve to generate, via (1), a pair of oppositely
directed waves having the surface profiles (or eleva-
tions)

£.(z, 1) = Re {(iw/Qe.(z, —R)e ™'}, (6)
To study the interaction of these surface waves with
the submerged cylinder depicted in Fig. 1, we in-
troduce an auxiliary or Green’s function, G(z, y; 2,
y'), according to the specifications

2

(g; + (%I—Z)G(x, 12, Y) = —8x — 2)iy — ¥)

(“°°<$,$'<°°y“‘h<y,y'<°°) (7)

and
(8/9y + G = 0, ™)

as well as a null limit when y — o; it is familiar
that all of the latter are vouchsafed for by the rep-
resentation*

Yy = —hr

1 R
G, y; 2, y) = —3, log o3

d¢

1 fw N~ y+v’ +2h)
- cos ((x — X' )¢
+, ) costle ~ =) et

®)

where
R=@—-2)V+u—y)
and
R¥ =@ —a)+@+y + 20

evidently refer to the (squares of the) distances
separating the observation point (z, y) from the
source point (z’, y') and its image in the free surface,
(z', —y’" — 2h). The singularity of the integrand
in (8) at ¢ = « calls for some remedial procedure or
interpretation, and if an outgoing (surface) wave or
radiation condition be invoked we have only to
deform the contour slightly below this point; then
it follows that

G, y; ', y")
= —(1/21r) log (R/R*) + ’l:e“lz-z'l""(!l‘*‘ﬂ'+2h)
1 % Camer ,
-*-7_;'./;6"l l{ﬂCOSn(y+y + 2R)

—«sinq(y + ¥ + 2W)}dn/(n" +«) (9
4 F. John, Commun. Pure Appl. Math. 3, 45 (1950).
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and the second term (arising from the aforesaid
singularity) represents the surface wave or dominant
component for |z — /| - .

Choosing the functions ¢(z, y) and G(z, ¥; ', ¥")
as the subjects for an application of Green’s (sym-
metric) integral theorem within the entire fluid do-
main surrounding the rigid eylinder, at which 9,,=0,
—7 < ¢ < =, the outcome

oz, y) = ¢™(z, y)

+ [ o) 37 6@ 4, Y)mds’ (10)
expresses the potential factor at any point in terms
of the (assigned) incoming surface waves and the
(unknown) values of the same potential on the cyl-
inder boundary. If we ascribe a fore-aft symmetry
to the incoming waves or excitation, say

Ky

o ™(x, y) = coskre ™,
and designate the appertaining potential function
with the index s, then

(14

@.(T,y) = coskxe”

(11)

Far from the eylinder, where the surface wave com-
ponent of the Green’s function (9) predominates,
it appears that

Jd
+ fcso.(ﬂ') WG(% U2, Y] ds’.

¢,($, y) zeo’x:—xv[% + ie—zu.

G e ds] i
(12)
%(x: y) o~ %_et'xz—xy + e".““—“lll:_]i + ie—hh

r— —oo ,

X [ 6.00.6" ) ds] ,

whence the amplitude factors (Fig. 1) of the incoming
and outgoing surface waves can be identified:

Ai=3 Bi=3+i [ a@a ),

A2=

(S

, By =144 f @, (3)0,(e™**7), ., ds.
L¢d
Since ¢,(#) is an even function of ¢ (or z),

f (0.(!’)6,-(6*“2—“”),_“ ds
C

= fc ©.(8)0.(cos kx €7), ., ds,
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Fia. 2. Single-wave excitation.
and thus

Ax = Az = %s (13)

B, =B, =%+ f ©,(8)0.(cos kz €),.-, ds
[+

To determine ¢,(#), and thereby pave the way
for a complete specification of the corresponding
fluid motion, we subject the function ¢,(z, ¥) in
(11) to the boundary condition at the cyhnder and
obtain an mtegral equation

8.(c08 Kz 6, = f @)K, 8) s (14)
[+
with the kernel
K@, ¢) = —0,0,.G, ¥; 2, Y)]rmeima- (15)

For an incoming wave configuration of the op-
posite (i.e., antisymmetry) namely

1nc

(xz,y) = isinkze™”
the accompanying potential function

ea(r, ¥) = isinkre ™
+ [ @) & 6@y &, lma e
has the asymptotic behaviors
o) 2o i [ 0 ]
' 1, —iKz~xy

__2.6. ’ r— x, (17)

(16)

TKT—KY

?a(, Y) = 3
+ e--'"-‘"l:—% + e f 0.0, ™) 1ma ds] )
[+

r— —o,
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Inasmuch as ¢,(¢) is an odd function of ¢ (or z),

fc @.(8)9.(6" 7, mq ds
- - fc )9, -. ds

= —3 f ¢.(9)9,(1n kx ), ., ds
[+

and the incoming-outgoing wave amplitude factors
comprised in (17), viz.:

A-l = —J‘iz_': %r (18)

B,=-B =1+ e’z""f ©.(9)0,(in kx €7*Y), -, ds
c

bear the expected interrelation. Calling upon the

boundary condition at the cylinder once again, this

time as it concerns the wavefunction (16), we deduce
an integral equation for ¢.(d),

19,(5in kx € ), ny = f e.0NK(@®, ) ds’, (19)

with the same kernel encountered before [cf. (15)].

The outcome of superposing these symmetric and
antisymmetric configuration furnishes a wave pat-
tern as schematized in Fig. 2, wherein the reflection
and transmission coefficients R, T for a lone in-
coming wave [with amplitude factor 1-e***~*¥] take
the forms

R = Bl + 31
= i [ [o.) + 0@, ds
(4]
= g2 f ©,(3)9,(cos kx €*),., ds
c

— f 0 8)3.(6in kz 6),ouds  (20)
[

and
T = Bz +Bz

L+ [ [p.0) + 0106 ), ds

=1+ ie"‘""f .(9)9.(cos kz € ),-, ds
[+}

-+ ¢ j;' 2.(8)9,(8In kx ¢, n, ds (21)

If we introduce the expansions

0.8 = Eo a, cos nd, e = Db, sin nd
n= n=0

(+r <o <7 (22
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of the requisite symmetry, then
R =¢ ) {da,1, — b,J,}

n=0

and (23)

T=1+¢* 3 {iad, + b.J.},

n=0
where

I, = f cosnd d,(cos kx & **),., ds, (24)
c

J. = j;sin nd 3,(sin kx € ), ., ds. 25)
After multiplying by cos nd, sin n¢ in the integral
equations (14), (19) for ¢,(?), ¢.(9), respectively,
and integrating around the cylindrical contour, it
appears that the expansion coefficients a, , b, of
(22) are determined by the linear systems

In = Z ameny iJn = Z memny
m=0 m=0
n==01,---, (26)
in which
K,.. = f cos m3K(@®, &) cosnd’ dsds’ = K,., (27)
c

and
L. = f sin mOK (S, &) sin nd’ ds ds’ = L. (28)

3. APPROXIMATION TO THE TRANSMISSION
COEFFICIENT AT NORMAL INCIDENCE

Our scheme for analyzing the broadside encounter
between a lone surface wave and the submerged
cylinder is now formally complete, and the next stage
in carrying it forward evidently requires an evalua-
tion of the definite integrals defined by (24), (25),
(27), and (28). To this end, we rely upon the

Lemma. Let u(z, y) be a solution of the reduced
wave equation (without sources),

(8°/02" + 8°/0y* + K)u(z,y) =0 (29)

on and within the circle of radius a; if the plane
polar coordinates r, & are referred to an origin at
the center of the circle, viz.: 2z = rsind, y = r cos ¢,
and the symbolic operator angle D is defined by

cos D = (1/7k)a/dy, sin D = (1/7k)a/9z, (30)
then
21—1; f_ ) [g—r ulr, a)l_a-:i‘fna 9
» O _cos
=1 [dr J»(k'r)]r_° sin nDu(O)r (31)

SURFACE WAVES 1235

where J,(z) is the ordinary Bessel function and
u(0) designates the value of u(z, y) at the center
of the circle.

A corresponding statement for regular harmonic
functions is the direct consequence of proceeding
to the limit & — 0 in (31); since

Ji@) = 7'/2%)) 4 0E™),
and
cosnD =2""cos" D — (32" % cos®* D 4 .-,
while
ginnD = gin D{2"* cos™' D

— (n;z)zn—a cosn-s D + . “},

we find that
1 (au(r, o))
%f_' o ... cos nd dd
n—1 aﬂ

" En - Do D
and
1 [ (a“_("z_‘l)) sin nd do
21l' - 81' r=gq

n=—1 n—1

o098 0. @)

= 2m — 1oz oy

The latter formulas can be immediately applied
to the evaluation of the single integrals (24), (25),
wherein cos xz € *Y, sin kz ¢ ** evidence a regular
plane harmonic character. Thus,

I, = f cos nd 9,(cos xx &™), -, ds
c

a"_l dn —-Ky — "_Igfa_)’:_.
= 21ram;i7(e Jmo = (—1) n— i’

(34)

whereas

J, = f sin nd 9,(sin kx €**),-. ds
c

n—1

a' 9 9 v s
n—1 (6 i sin Kx)z.v-o

(n — 1) 3z oy

= (=) 'rka)"/(n — D! = —L; (35)
it will be noted, in particular, that I, = Jo = 0,
and so the sums in (23) effectively commence at

n =1
As a preliminary to the use of the generalized

= 21ra2



1236 HAROLD
mean-value relations (32), (33) in connection with
the double integrals (27), (28), we write

G, y;2', 9"

= —(1/2r) log B + g(z, y; 2’
and thereby isolate both the singular part of the

Green’s function (when (z, y), (z/, ¥') span any
common domain) and the regular harmonic part

[ef. (8)]

y¥)  (36)

1
gz, y; 2', y') = o log B*

a¢

€ 1)

lfm ~¢(v+y’+2h)
= cos {{xz — a)e
+1 [ eoste — )

if y, ¥' > —h. Since

o«
n=1 T

logR = logr, — (k> cos n(d — ¥'),
>
where r,, r. designate the greater and lesser of

r, r’ respectively, it now follows that

nw
Knn - ?
a2n an an
- = D o5 35" 900, %; 0, ¥)|ymyr=0, (38)
while
S .
Kon = =1 o = Ditn = D1 35" 3y
X 90, 4;0, Y)seyrmoy, mFEn.  (39)
Moreover,
¥
A 7n 1 R Y Ml
oy oy 108 Rl
dZ
d . 2n log (y + 2h)]y-0
_ (_1_.,) _ _@n— 1!
dy2n—1 y + 2h v—0 (2h)2n b
and
a" _9”_ N A, (vty’+2h) df ]
ay" ay,n l:‘/(; 008 g‘(x v )e §—x v.u"—'oo
= if:_ I:fw e—r(wzh) dg' ]
dy " 0 g. — K_ly=o
= i. 12: f“ e—z{‘h _ﬁ_—
22n dh2n o g_ — %

d2n
= K2n dﬂ2n F(ﬂ’)lu-mth
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with
— ” —uf at .
P = [ e B (40)
hence
_nr_ x(a)" Gn—1)!
Kuw=7%+3 <2h) i(n = DI
2n 1 dZu
o(0) " s o P, D)
and, similarly,
m+n l_ mn (m + n — 1)!
=1 (2h) m = Dl = 1)1
_ (Ka)m+n 1 dm+n
4 (m — Din — Dl da™""
X F(u)| =2, m # n, (42)

which imply, in particular, that K,, = 0, all =.
Furthermore,

7_7/_7-‘_ i aZn i__a__ an—l an-l
2 T T n=DPoxar oy tay "

L., =

X 9@ y; 2 ey 0 (43)

and, inasmuch as

an—l
In—l log R lx v

=’y >0

8 ad Gl
9z 9z "o
aZ 82"—2

— $
- a.’l? ay2n—2 IOg [x + (y + 2h) ] z,y-0

_ _1 aZu—2 —a_{
2 9y>" % 9z o

2z }
+ (y + 2h)2 z,y-0

o d2n—2 ( 1 ) _ d2n—~l ( 1 )
T\ + 20 e Ay \y + 20/,
while
i_é_ an—l an—l
oz az” ay™ ' ay’"!
° rwsursany _dE ]
e NSyt +3R)
Xl:f; cos {(x — z')e F—rl.
z’ y'—0

a¢

& — K:lz.v—-o

62 aZn—2 © _ N
= Ty cos {x ¢~ f W
0

ax” oy
d%_2 I:fw —§ (y+2k) _d_g_-_:l

0 g.ze .(- — Kly=0
ac

= dyZn-z
?——7],-0’

2
d" [‘/‘m e—r(u+2»)
0

a7
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it becomes apparent that
‘Kﬂﬂ = Lﬂ";

this equality continues to hold, in fact, whatever the
values of the indices, viz.:

Kon = Ly, (44)

Since J, = —I, and K,,, = L,., the equations (26)
for the Fourier expansion coefficients a,, b, can be
displayed in the forms

all m, n.

= E amen a,nd I,. = 7; Z memn’

m=] me=]

n=12 -
whose comparison reveals that
a, = 1b,,. (45)
Accordingly, we find
R=¢™™ > {iad,—bJ,} =0, (46)

n=1

thus corroborating the conclusion reached by Dean,
and furthermore

T =1+ 2 Y. a.l,,

=1

(47)

which constitutes a simplified version of the form
in (23).

To obtain specific details concerning the latter
quantity, there remains the task of determining
the Fourier coefficients a.; we forego here any at-
tempts at substantial analytic generality in this re-
gard and content ourselves with recording a first
approximation, based on the supposition that a, £ 0,

a; =@a3 = ++» = 0. Thena, = I,/K,; and
TV =1 4+ 2iq e
=1+ 2'5[(11)2/1(11]3_2”, (48)
where
I, = f cos ¢ ,(coskr e ), ds = —mxa  (49)
[+
and

K, = ——f cosd 9, 0, Glrarraa cOS Y ds ds’
. C

= "E' + ‘g (;—h) — 7(ka)’d’/du’F () |um2in.  (50)

A complex structure attaches to the function
F(u) since the defining integral, (40), must be con-
ducted along a path that deviates from the real
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t-axis in the neighborhood of the singularity at { = 1;
as noted earlier, the radiation condition favors by-
passing the singularity from below, and it becomes
a simple matter to confirm that accordingly,

F(u) = wie™*

® . dy
- - 51
+]; {n cos un sm’"’}n’+1’ (51)
where the second, and entirely real, contribution
is expressible by means of the exponential integral,
viz.:

-3 . d
Q) = -/; {n cos un — sin uy} p _:l_ 1
. 62)
with
© x2n+l
% —_ o
8i*(@) = &i(—2) + 2 X 5 en T D1
0<z< o, (53)
and
o —C
&i(—z) = —f —dt

Evidently, d*F/dy® = wie™* + d°G/dy’, and therefore

2
T =14+ 2'i(1rxa)2e—2"'{7§r + w(%)

JERC N

= 1 4 dir(xa)’ 2"'{1 + 2 (%)2 — 2(xa)®
x [ G

[1 v (h) ~ %) ((5” ),.-m

+ %@@%'”}[1 +3 (1%)

— 2(xa)’ (de)Fm — 2ir(ka)’e 2""]—1, (54)

with an absolute magnitude equal to unity, as befits
the absence of reflection.

A second approximation to the transmission coeffi-
cient, T, follows from the assumption that a,,

a, #0,a; = a, = --- = 0, whence
Ilez — IzKlz . = IzKu - IlKlz
K11K22 Kfz ! ? KuKza - K12
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and
T(z) = 1 + 21'6—2“((1111 + (1212)
= 1 + 21'6_2“'(K11K22 -

X (IiKy, + LKy

)

— 2I,I,K,;); (65)

owing to the fact that I, has a magnitude pro-
portional to (xa)", the efficacy of this successive
approximation scheme is contingent on small values
of xa. If the circumstances are otherwise and a large
number of coefficients a, in the Fourier expansion
of the contour potential have comparable magni-
tudes, we are prompted to seek alternative (analytic)
representations for the latter function through modi-
fication of, or approximation in, the integral equa-
tion (14) and also to consider the utilization of
variational procedures.

4. FORMULATION OF THE SCATTERING
PROBLEM AT OBLIQUE INCIDENCE

Let us now inquire after the effect of the sub-
merged cylinder upon an incoming surface wave
whose direction of travel makes the (glancing) angle
ir — o, 0 < a < }r, relative to its axis; the limit
a — 0 thus corresponds to the earlier case of normal
incidence, and o — 3= signals the approach to a
grazing encounter. If we maintain the prior orienta-
tion of the coordinate system (Fig. 1), and char-
acterize the incoming or primary wave by the poten-
tial function

¢ino(x’ y’ 2) — ez‘t(zcol a+tzsin a)—xy
— euu sin a‘,/xne(x y)’ (56)
it follows that
(8°/9z° + 8*/9y® — «*sin® a)¢¥'™ = 0. 57

Inasmuch as the cylinder maintaing an invariable
aspect relative to any plane z = const, and the
condition of vanishing normal velocity holds uni-
formly at its surface, the complete (i.e., primary +
secondary) potential function o(z, y, 2) evidences
the same z dependence associated with the primary
component, viz.:

ez, y,2) =Yz, y),

and thus, for each plane section normal to the cyl-
inder axis;, the problem centers on solution of the
differential equation

Gara

(58)

62

P (59

~ «’sin® a)://(x, y) = 0.

LEVINE

To describe a solution compatible with the boundary
condition at both the free and cylinder surfaces in
the manner hitherto employed, we require a Green’s
function akin to that defined by (7), though specified
now in terms of the equation

9’ 9’
(5;5 + 51;5 - Vz)G(xv Y; x’) ?/') )

= —d(x — 2)éy — ¥'). (60)

For the determination of this function, we may
commence by-subjecting (60) to a Fourier integral
transformation in respect of the z-coordinate, there-
by arriving at the ordinary differential equation

@/dy" — )G, ¥, 3) (61)

[after successive integrations by parts which bring
in null limit contributions when it is assumed that
» has an infinitesimal positive imaginary part], where

Gy, v, )

==y — ¥

- f TGy — oy ) ~ &) (62)

and
=4 (63)
The everywhere-continuous solution of (61) that
satisfies the (free surface) condition

(d/dy + )G = 0,

and vanishes for y — «, ean be expressed in the
forms

Gy, v, ¢)
{A(ekv + (& + 0/ — e ™)™, y < y",
A + (o + 0/ — e™)e™,  y>y,

where k = +(* 4+ »*)}, and compliance with the
discontinuity requirement for the derivative

dG/dylnts =

1k. Hence

y=0, (64)

-1
implies that 4 =
Gy, v, 8

— L —k(y>=v<)
=% {e Tr—«

if y,, y designate the greater and lesser of y, ¥’
respectively, and by employing the inverse of the
transformation (62) we arrive at an integral rep-
resentation of the desired Green’s function, namely

k + K —-k(v>+v<)}
P——t (65)
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Gz, y; 2, y) = 41—Tf Cal

~k(y>—v<) —k(y+y')
e —e 2
X { % Rl

e—k(vﬂl')} dg.

= 52 [KolR) — KoGRY)]

+ar ]

where

=k{y+y’)
itz—a) €

kE—«

d¢, (66)

B=@~-2)V+@-—y)
R¥ = (z—2) + @+,

and K,(z) denotes the modified Bessel function. It
is readily confirmed that the above expression re-
verts to the form (8) in the limit » — 0, bearing in
mind that the free-surface condition has been (tempo-
rarily) enforced at y = O rather than y = —h.

Before completing these preliminaries relative to
the Green’s function, there remains the task of
identifying a surface wave component therein, for
which purpose the integral in (66) invites closer
attention. The stipulation of a vanishing value for
arg k = arg ({* + )} at the extremities of the
path of integration fixes the assignments for arg k
elsewhere as depicted in Fig. 3, if a pair of distinct
vertical branch cuts be drawn away from the points
¢ = =kiv. Since k = « implies that * + »* = «* or
¢ = =K — v} we are obliged to conduct the
path of integration so as to bypass these singularities
of the integrand; if v < «, and the latter are situated
on the real axis of the {-plane, the indented contour
shown is the one consistent with an outgoing wave
behavior for the function whose integral is under
consideration.

When £ — 2/ > 0, the aforesaid integration con-
tour can be deformed upwards in the {-plane and
around the sides of the branch cut extending from

L[ e £ e
2r Jow k—« « — )}
o
+ L -ntz—z") €
2r J,

—i(nt=r") ¥ (y+y’)

Y l_ f' ~n(z—z") :
g gkl Rt wl e g
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" IV I
"z %2
j: ¢ - PLANE
1
3 iv
urg‘\/zrui= o ‘ xiov?
v ~— ——
DY JNC
t-iv
i T
2 172
Fia. 3. Integration contour.
¢ = v to ¢ = 1, with provision for the pole at

¢ = -+ — »*)! which is thereby encountered. The
(discrete) residue contribution arising from the latter
source becomes apparent if the integrand is displayed
in the form

1 -
4 f eit(z—z')-k(v-l»v')
2r Jow

&+ +«

s s
and thus proves to be
(@ — #)V exp [i(¢ — Pz — z)]
X exp [—k@y + y)].  (67)

Accordingly, the original integral is expressible by
the sum of (67) and the (continuous) branch cut
contribution, viz.:

[i6¢ — )@ — 2)] exp [—x(y + ¥)]

Si(nr=rn)i(y+y’)

€

it — ) —«

- o e 7 — Ml — 2] e [~y + ¥)]

+ ?lr f,m e (" — V) cos [(n° — Ny + )]

— «sin [(F = DNy + G + & =¥ dy,

z—z > 0. (68)
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On the other hand, if £ — 2’ < 0 and the transforma-

tion of our original integral is effected by analogous

manipulations in the lower half of the {-plane, the

sole modification of (68) amounts to an interchange

of z and z’, which is to say that the restriction

appended thereto can be lifted after the replacement

ofz — 2’ by |z — /|

Hence, as an alternative to the representation
(66), weobtaln [for —» < 2,2’ < ©,0< gy, < =]

6@ 437, ¥) = 5 KGR) — KooR")]

—x{y+y’}

+ i@ — ) P exp i@ — ) [z — 2'|e
+ }r f T (G = A eos [(F — DY + 1))

— «sin [(ff =My + )@ + & =) dy, (69)

wherein all of the terms have direct antecedents
in the expression (8), reached after a passage to the
limit » — 0; evidently the second term of (69) pre-
dominates for | — 2’| — « and has the character-
istic surface wave attenuation with increasing values
of y. If the free surface lies at the level y = —h,
we have only to substitute y + 3’ + 24 fory + ¥/
in each of the preceding equations for the Green’s
function.

With this stock of information at hand, we can
resume the analysis of the scattering of an obliquely
incident surface wave by the submerged cylinder.
As in the case of broadside incidence, it proves
convenient to fashion the sought-for asymmetric
configuration from a pair of others that have an
even or odd character, respectively, in any plane sec-
tion normal to the cylinder axis. More precisely,
an even designation attaches to the potential factor

V.(x, y¥) = cos (kx cos a)e ¥
(i)
+ [ ) 3 6@ v, s (70)

whose first term underlies the incoming wave com-
bination

17,ix(z cos a+2 sin a)—xy ix(—z cos a+zsin a)—xy
ile +e ]

that is symmetric in z, and whose second term, in-
dicative of the presence of the cylinder, involves a
Green’s function of the equation (60) with the
special parameter v = « sin «, viz.:

3 9’
(EE + W x* gin® a)G(x, v;2',y)

= -5 — )6y — y). (70)

LEVINE
Far from the cylinder C, where the surface wave
component

[ i% cos alz—-z'le—x(u+v’+2h)
COS @

of the Green’s function dominates [ef. (69)], we find

1 « —2xh

1//,(37, y) ge-n':ue cos a-—xu[§ + e

COS a

X ‘/;' ¢,(0)a,(3—“m cos a—lw)r-a ds:l

+ %e—ixz cos u—xv' r— © , (72)
. X 1 ie—z:h
~ 1,1Xx co8 a—Ky —iKT cO8 a—«ky| -
\l/a(x, Z/) =~ 36 + € [2 + cos a

Xf ‘p‘(l’)ar(eiucoa a—xv)r-a dS], z— —m,
[

and thus, relying on the fact that ¢,.(#) is an even
function of #(—7 < ¢ < =), the incoming and out-
going wave amplitude factors comprised in (72) be-
long to the symmetric scheme

A4, =4, = %, 7
ie—2xh ( 3)

COS a

BI=B2=1+

(XY

>< fc 2.()3,[cos (kz c08 a)e™], . ds.

For the opposite symmetry pattern, which refers
to an incoming wave combination

1, i«{z cos a+zsin a)—xy ix(—z cos a+2sin a)—cxy
3le —e ]

that is antisymmetric in z, the concomitant poten-
tial factor takes the form

Y.z, y) = 7sin (kr cos a)e ™

d
+ j; '/’a(",) 877 G(xr Y; 2, y’)|r'-a dS', (74)

and bespeaks the aggregate of (correspondingly re-
lated) individual wave amplitude factors

Al = ‘%‘

=~ = 1 e
B, = 2 cos a

—2xh

X [ ¥.@)a[sin (a cos )¢, ds.  (75)
c

On direct superposition of this pair of symmetry

configurations, we deduce that for the lone incoming

wave (56) the relative amplitude factors (or reflection
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and transmission coefficients) of the two outgoing
waves are

. ok
e ™"

CO8S

R=BI+BI=

X f ¥, ()0, [cos (kx cos a)e ], -, ds

—2xh

Py f Y.)9,[sin (kx cos a)e **], -, ds (76)
and
o —2xh
= 1€
T =B, +B5, = 1+cosa
X f ¥,(9)9,[cos (kx cos a)e *],., ds
—2xh
cos - f Y.(3)8,[sin (kx cos a)e™),.. ds 77
Pursuant to the expansions
V. = X a,cosnd,  ¢.0) = D b,sinng,
n=0 n=0
—r<4a < Ty (78)

that incorporate the symmetries characteristic of
the respective cylinder contour potentials, it follows
that

—2xh ©

COS & ,;, i0uln = buJu} (79)
and -2"‘5‘3{@(11 + b,
where
I, = fc cos nd 9,[cos (kr cos a)e ¥],-.ds  (80)
and
J. = fc sin nd 9,[sin (kz cos a)¢ *],-. ds.  (81)

If these same expansions are coupled with the integral
equations for the contour potentials that stem from
(70), (74), namely

d,[cos (xz cos a)e"],., = f v.)K@®, ) ds,
c

i0,[sin (kz €08 )¢ ],oy = f L)K@, 3) ds,

K@, ¢) = —0,0,. G, y; &', Y')|rarcas

the consequences include a pair of linear systems
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Z (1299 s Kmn = f CcOs mﬂK(&, 0’)
m=0 [+
X cosnd’ ds ds’, m,n=0,1,--+, (82
iy = Y bulsy  Lun = [ sinmoK@, o)
m=0 c
X sin n’ ds ds’ (83)

that determine the coefficients a,,, b,. There is a
manifest similarity between the schemes for deter-
mining the reflection and transmission coefficients
at broadside and oblique incidence which rest upon
the internally complete groups of equations (23)—(28)
and (79)-(83); whatever the differences in outcome
must therefore be ascribed to the elements 7., J,,
K., and L,, that figure in the respective cases.

5. APPROXIMATION TO THE REFLECTION AND
TRANSMISSION COEFFICIENTS AT OBLIQUE
INCIDENCE

For particulars regarding the newly defined ele-
ments, a preliminary modification of the Lemma
(29)—(31) is in order; thus, on replacing k by i sin &
therein, it follows that solutions of the equation

(0°/0x° + 9°/9y” — K’ sin’ Qulzr, y) = 0,  (84)

regular throughout the circular domain 0 < r < g,
—x < ¢ < , conform to the generalized mean-value
relations

-211; : [a%_ ufr, z?)] -:i(r)lsm? do
= (=1 [ I(rsin a):l :l‘l’ls nDu(0),  (85)
where
1 a . 1 d
cos D = Txksinedy’ OO D= —sina sz (86)
and z = rsin &, y = r cos ¢; here I,(2) designates

the Bessel function of purely imaginary argument,
viz.:

L() = e J,3G2).
The integrals (80), (81) may be directly evaluated

by recourse to (85), (86), and the initial represent-
atives (n = 0, 1, 2) prove to be

I, = 2m«a sin al,(ka sin «),
I, = —2mxal!(ka sin a), (87)
I, = (2mxa/sin ) (2 — sin’® a)I(ka sin o),
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and
Jo = 0,

Ji = 2mxa cos all(ka sin ), (88)

47ra
sin a

It

J2 cos all(ka sin o),
where the primes connote argument derivatives; it
is readily confirmed that these expressions are in
harmony with the previously obtained values in
the limit « — 0, though the proportionality relation
expressed in (35) does not apply when o = 0.
As in the case of broadside incidence, we effect an
evaluation of the double integrals characterizing
K.. and L,, after the resolution

G, y; 2, y) = 1/20)KkR sin o) + gz, y; 2, ¥'),

which isolates the singular and regular components
of the Green’s function (71) for all dispositions of
the points (z, ¥) and (z’, ¥’) on or within the im-
mersed contour C. The former possesses a Fourier
expansion

1 . 1 . .
on KykRsina) = 2 Io(kr< sin o) Ky(krs sin o)

+ 1 i I (kr< sin a)K,(xrs sin ) cosn(@ — &),

n=1

that lends itself to the determination of (harmonic)
averages on the contour, while the latter

oz, y; 7, o) = —517; Ko(kE* sin o)

__1_ ® i (z—2z")
* o f_m ¢

[— (& + & sin’ )Yy + 3 + 28)]
(* + «*sin’ @)t — &

X 2 ds,
is amenable to the computation of such averages by
means of (85), (86). Proceeding in this fashion, there
obtains

_ I {Kl(xa sin a) .
Ko = 2211 1(xa sin @) + Ko(2h sin o)
— F(2«h, sin a)}, (89)
LI, ). .

Ko; = Klo = g sin aK1(2Kh sin a)

+ 2 P, sin a):l } 90)

dl‘ o p#=2xh,

and

LEVINE

2
= é—;_ {—é sin® o

+ sin® a|:Ko(2Kh sin a) + I&M]

{(ka sin a)
Ii(ka sin a)

2xh 8in o
d2
- W F(I‘: sin a)lu-th}v (91)

whereas Lo, = Loy, = Ly, = 0 and

_ I} 1., Kl(asina)
In = 2 {_2 SID & T7lka sin a)

+ s;‘:h"‘ K.(2¢h sin o)

2 .

- (sin2 a— 572')1’" (u, sin a)],.-z.;.}; 92)

ete., with
© _ 2 2 %

O P

On emulating the integration procedure employed
for the establishment of the alternative Green’s
function representation (69), we deduce that

—~5
COS o

F(u,sin a) =
= (n* — sin® @)}
pin @ 772 + cos2 a

—9 f ® sin [u(s® — sin’ @)?] d
sna 7+ cos’a

+ 2 cos [u(n® — sin® &)} dy

(94)

Moreover, the combination of (real) infinite integrals
in (94) can be recast in terms of a single integral
over a finite range, viz.:

Flu, sin a) = 320-’5; ¢ & 2Ko(u sin a)

2¢7"
cos &

1+ cosa
sin

— 2 f Ko(zsin o) dv.  (95)
0

Accordingly, the complex nature of the quantities

Ky, Ky, Ki; and Ly, is displayed by the forms
Ko = —i(l3/cos a)e** + (Ta/2m)koo,
Koy = —i(I,I,/cos )™ — (I,I,/2m)kq, (96)
K, = —i(I3/cos a)e ™ + (I3/2m)k1,

and
L, = —il} cosae”>* + (I3/20)1,,
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whose real parts find explicit expression in terms
of the appertaining factors

_ Kikasina) _ _
oo = I,(ka sin a) K,(2«h sin )
28—21h 1 + oS o
cos a sin «
2xh
+ 2¢7% f ¢’Ko(z sin o) dz,
0
koy = 2K,(2«h sin a) + sin aK,(2«h sin )
_ 26—201 1 + cos &
COS a sin a

2xh
— g2k f eKolzsina) dz,  (97)
0

K{(ka sin a)

kn, =.—3sin’ :
e 2 I(xa sin «)

— 2K,(2«h sin a)
— 2sin aK,(2«h sin o)

— sin® a{Ko(2Kh sin o) + K\(2¢h sin a) a)}

2xh 8in «

2e—2xh
COs @

1+ cosa
sin «

2xh
+ 272 f ¢°Ko(z sin ) dr,
0

Ki(ka sin o)
I{(xa sin a)

— 2sin aK,(2¢h sin o) — (sin o/2xh) K,(2xh sin )
+ 2 cos ae”**" log [(1 + cos a)/sin o]

2
—1sin" &

— 2K 4(2¢h sin o)

2«h
+ 2 cos’® ae™** f ¢’Ky(z sin ) dz.
V]

For a first approximation to the reflection and
transmission coeflicients, we employ truncated ver-
sions of the linear systems (82), (83) based on the
hypotheses that a,, a, and b, are the sole nonvanish-
ing coefficients in the contour potential expansions.

Then

IoKu_Ile . I,Kyw—I.K,,

= a z' Jl
- 2 1 2
KOOKll_ 01 ’ KOOKU._ o1 ’

Lll

Qo b, =
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and
RV = (e7*/cos &)[ilaoly + a,l;) — bJ,]
=i e > [IgKn + I?Koo — 21,1, K,,
COS o KooKu - Kgl
2
— 2 4 -1
cos aLu:l, (98)
whereas
—2«h 2 : 2
 _ . € IiK,, + Ko, — 21,1, Ky,
T =1+ COos a KK, — 31
. L
+ cos’ a 7 (99)
Since

LK, + IiKy ~ 2I,1,Ky,
= (Is13/20) (koo + ki + 2koy)
and
KoK — Ki,
= —i(Is1}/2n cos a)e > (koo + kis + 2Kkor)
+ [I613/(2m)*)(kookns — ko),
it appears that

o kooky — k:l
koo 4 kb + 2ko

COS o

+ cos a + (1/2m) 1, .

-1
e2xh]

(100)

RY = —l:l + == cos
2

if « =0, 1,y = Ky, koo — ©, and

(kooku - kgl)/(koo + ki + 2’001) — ki,

whence R’ — 0, as anticipated;if a — r, R — —1,
in keeping with the fact that a straight-crested sur-
face wave cannot travel for unlimited distances
over, and parallel to the axis of a submerged circu-
lar cylinder.

The transmission coefficient T, given by (99),
reduces to the prior approximation, (48), at normal
incidence and, in consort with B“’, upholds the
requirement of energy balance among the primary
and secondary surface wave components.
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Relativistic Particles of Nonzero Mass and Any Spin
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The infinitesimal generators of the inhomogeneous Lorentz group have been given in a basis in
which the components of the linear-momentum operators are diagonal and in another basis in which
the square of the angular momentum is diagonal for all unitary irreducible ray representations of
the group. In a previous paper we showed how the two bases were related for representations corre-
sponding to zero mass and any finite spin. In the present paper we show how the two bases are
related for representations corresponding to nonzero mass and any spin. Thus this paper and the
preceding one enable us to expand relativistic plane waves into relativistic spherical waves and
vice-versa for particles of any spin and any mass.

In the previous paper we used the relation between the linear- and angular-momentum bases to
integrate the infinitesimal generators in the angular-momentum basis and thereby obtain closed
expressions which show how the angular momentum of particles of zero mass and any finite spin
transform under changes of frame of reference. Similar use could be made of the transformation of
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the present paper. Results of such use will be given in a later paper.

1. INTRODUCTION AND SUMMARY

N Ref. 1 we showed how the linear- and angular-
momentum bases were related for particles of
zero mass and any finite spin. In the present paper
it is our objective to show how the two bases are
related for relativistic particles of nonzero mass and
any spin. In order to minimize the preliminaries, we
shall write this paper as a direct extension of Ref. 1,
which we shall hereafter refer to as Part I and refer
to formulas there as needed.

In the case of nonzero mass, we let the abstract
veetor ® be represented by the complex function
f®, v) = f(p1, P2 D3, v) In the linear-momentum
basis where the variables p; have the same range
of values as in Part I and the variable ¥ can take
on only the 2s 4 1 discrete valuesy = —s, —s
1, -++, 8 — 1, 5. As before s is the spin of the par-
ticle and is thus either & nonnegative integer or a
positive half-odd integer.

In the angular momentum basis, the abstract
vector ® is represented by the complex function
F(E, j, m, o) where the variable F is a continuous
real variable which has the range y < F < « when
the sign of the energy ¢ = +1 and which has the
range —o < E < —u for e = —1, where u is the
mass of the particle. The variable « can take on
the values —s, —s + 1, -+, s — 1, s; the quantum
number j takes on the values (for a fixed value of a)
j=lel,|le] +1,la| + 2, -+ ; and for a fixed value

* Operated with support from the U. S. Advanced Research
Projects Agency.
1 H. E. Moses, J. Math. Phys. 6, 928 (1965).

of j, the quantum number m takes on the 2j + 1
valuesm = —j, —j + 1, --- ,j — 1, 4.

In terms of the two bases the norm of ® is given
by

@9 =3 [ 2@,

= a;m f ]-{—jd(% ,F(E) g, m, a)lzy

where k(E) = (E* — u*)}, and the integrations and
summations are taken over the ranges of definition
of the variables.

As in Part I we write

q)(_)f(p7 'Y) HF(E: j; m, a)’

Ad ": (Af)(P; 'Y) (:') (AF)(E, i m, a);

where 4 is an operator in the Hilbert space. Thus
far, the chief difference between the nonzero-mass
representations and the zero-mass representations of
Part I is the appearance of the additional variables
v and «. The appearance of these variables adds
considerably to the difficulty of finding the trans-
formation between the function f(p, v) and the
function F (&, j, m, ).

We now show how the infinitesimal generators
act in the linear-momentum basis. For the sake of
definiteness we shall pick a particular representation
for the spin operators which appear in this basis.
We introduce three operators S; (¢ = 1, 2, 3) which
are defined as follows:

1244
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SN, v) = @, V),
(S, + iS)N®, v)
= [s — N6 + v + DI, v + 1),
1S)NP, v)
=+ M6 -7+ VPE,y— 1. QD)

It is easily seen that the operators S; are Hermitian
angular momentum operators which constitute an
irreducible set characterized by S? + S2 + S =
s(s + 1)I1. Indeed (1.1) gives a standard representa-
tion for angular momentum or spin operators.

The infinitesimal generators of the proper, ortho-
chronous, inhomogeneous Lorentz group in the linear
momentum bases are (Refs. 2 and 3)

«s: —
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where V. = 8/op;, p = [pl, w(p) = (" + &)},
and €, is the usual antisymmetric three-index
symbol.

The infinitesimal generators as given in the an-
gular momentum basis are so complicated that we
do not reproduce them here but refer to equations
(2.1)-(2.10) of Ref. 4. However, we shall have to
make some changes in order that the results of
Ref. 4 are given in our notation. First of all, the
function ¢(&, j, m, a) of Ref. 4 is to be replaced by
F(E, §, m, a). The quantity p of Ref. 4 is to be re-
placed by k(E) = (E* — u*)!. Finally, we note that
if A is an operator, Ap(E, j, m, @) is now to be
written (AF)(E, j, m, «).

We note also an erratum in Ref. 4, namely the
following: In the present paper we use p as being

®:N®, 1) = pf@, 7), the mass of the particle which we always take as
_ positive; in Ref. 4 we must replace g by eu to be
HN®, 7) = e®)f@, 7), consistent with the notation of the present paper.
NP, v) = —ilp x V):f®,v) + SH, ), We are now in a position to give the t(ransforma—
s tion between the functions f(p, v) and F(E, j, m, )
WN@,7) = div@V 1@ 7) which is the principal point of the present paper.
€:ixP; : We define the polynomial S(j, m, «, ) by equation
+ s s S A2 4y of Part I. Then
1 m—y axty+m+ts +m+
@, 7 = Ap.,2 Z (=)™ (=1 @
M[ESEDINE LN ERRL O i (S
=!G+l (G{—a)!(G+a)! P P
% (M_ﬂﬁ) S(j, m, a, %’:)S(s, v, a, %)F(ew(p), i,m,a), (1.3)
F(E, j’ m, C() (E) Z ( 1)a+7+m+a( )‘y+m+1(z)m—
Y=g
E=ME+NG~-m!G+m! @+ 1)]* T N
X[ s—al+alG—al(+al [, de ], aocinae
X (1 — cos )" *(1 + cos 6)""*8(j, m, a, cos 8)S(s, v, , cos 6)
X f(k(E) sin 0 cos ¢, k(E) sin ¢sin ¢, k(E) cos 8, 7). (1.4)

In (1.3) the summation is taken over the entire
range of definition of the variables. Also we have
introduced the usual polar angles 6, ¢ by p =
p(sin 6 cos g, sin 6 sin ¢, cos 6).

As in Part I we can use the relations (1.3) and
(1.4) to integrate the infinitesimal generators in the
angular momentum basis and thereby show explicitly
how the angular momentum of a particle changes

2 L. L. Foldy, Phys. Rev. 102, 568 (1956).
3 JTu. M. Shirokov, Zh. Eksperim. i Teor. Fiz. 33, 1196
(1957) [English transl.: Soviet Phys.—JETP 13, 240 (1961)]

under changes of frame of reference. We shall post-
pone this discussion for another paper. It should be
mentioned, however, that in Ref. 5 which was written
before (1.3) and (1.4) were derived, the infinitesimal
generators in the angular momentum basis were inte-
grated numerically to show how the angular mo-
mentum changes under changes of origin, this change
being called ‘‘displacement broadening of angular

( g:; g) S. Lomont and H. E. Moses, J. Math. Phys. 5, 294
1

§ H, E. Moses and 8. C. Wang, Nuovo Cimento 36, 788
(1965).
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momentum.’”’ Also some calculations are given for
small displacements of origin.

The remainder of the present paper presents the
derivation of (1.3) and (1.4). In contrast to our
presentation in Part I where we verified the cor-
responding relations for massless paricles by using
properties of the Jacobi polynomials, we shall in
the present paper derive the expressions from first
principles. A simplified form of the procedure of the
present paper was used to derive the expressions
for the massless case of Part I.

2. USE OF BRA AND KET NOTATION AND
THE TRANSFORMATION FUNCTION

It will be convenient to use Dirac’s bra and ket
notation. Accordingly, abstract vectors in Hilbert
space will be denoted by kets. To describe the linear-
momentum basis we introduce the set of kets |p, v)
and the corresponding set of bras. To describe the
angular momentum basis we introduce the set of
kets |E, §, m, a) and the corresponding bras. Then
if the state which was designated in Sec. 1 by @ is
now designated by |®), we relate the functions f(p, v)
and F(E, j, m, a) to |®) by

@, ) =,y | ® 2.1
and
F (E ; ] y My a) =

(B, 4, m,a | ®). 22

The requirement that the inner product be preserved
in the two bases leads to the completeness relations

Z f@ [p, vXp, 7!

Z fk(E) IE: j, m, a><Ey 3, m, Oll =1, (23)

ivm,a

where I is the identity operator. It follows that

j(pr'Y) 'mzaf(P,'YlE,], mya>

X kl%l‘z) F(E, j, m, a)) 24)
and
F(E, j, m, a)

. d]
-Z[EimalnnRie,n. @5
it
It will be our objective to find the transformation
function (&, j, m, « | p, 7). This objective will be
accomplished by considering operators 4 constructed
from the set of infinitesimal generators of the group

H. E. MOSES

and evaluating <E, j, m, a| 4 [p, v) in two ways: (1)
by considering this quantity to be a product of the
bra (E, §, m, a| and the ket 4 [p, v), (2) by considering
this quantity to be a product of the bra (&, j, m, a| 4
and the ket [p, v). On equating these two expressions
for a sufficient number of operators A, we shall find
that the transformation function is completely deter-
mined up to a constant factor. This constant is
then determined by the completeness relation (2.3).

‘We now show how some of the infinitesimal gen-
erators of the group act on the kets |p, v). These
results are obtained by transcribing (1.1) and (1.2)
into ket notation.

Ss [ =7 p, 7
(8. —i8) Ip,v) = s — M6 +v+ DI [p, v+ 1),
(8: +18) [p,v) = [+ —v+ D |p, v — 1),
P [p, v} = p: [P, )
Hlp,v) = e«(p) |p, ),

’l'(p x V)3 lp) 7) + Sa |py 7):

9
— Ps ap2

Js |p: ’Y) =

(J2 = 2) Ip, ) = ['Lpa ap,

+ (@ — ip) %;] D, v) + (S — 48) [p, 7),

d

2 +3J) Ip,v) = l:lpa + ps T aps

— (@ + ip) ] p,v) + (S: +48) |p, v),

s P, V) = —%ew(p) |P, 7

’Lé . y
+ ot T (. — ip:)(S: + 8) P, 7)

— (p: + (S, — ©8,) |p: "l

We shall also need to know how some of the op-
erators act on the bras (E, j, m, «|. In particular,

(2.6)

(E, j, m,a| H = E(E, j, m, o,

(E, j, mya| Js = m(E, j, m, af,
(B, j, m,a| (J, — iJy)

=[G+ mG — m+ DKE, j,m — 1,al,
(E, j, m,a| (J, + iJ,)

=[G —mG+m+ DXE, j,m + 1,q,



RELATIVISTIC PARTICLES

1247

<E:];.71aIP3=k(E)l:i]-(E)];]:al_I' i+ 1

1 [(2,’-}- DG—a+DGi+a+ 1)]* (E,j,i+ 1,a|] ,

2j + 3

(E,s,8,8/ 9 = + T { k(E) — aE (E,s, 8,8 + 5 2Ic(E) 2s(E, s, 8,8 — 1[}

(Er .7; m, a] P'J = k(E)a<E: .7: m, al'

7 [2s + 8] {(2s + 1)*[(3 + 1) k(E) + k(E) aE](E s+ 1,ss] + 2k(E) @s)E,s + 1,s,8 — 1]}

2.7

Finally, we shall need to know how the operator T; defined by Eq. (2.13) of Ref. 4 acts on (&, j, §, o,

.. 1 .
<Es 7 ]va‘ T: = —m [(]

—a+ DG+ a)s —a+ D+ )NE, j, j,a — 1

2G4 1)

1 .
T2+l

1 [U—a+DU—a+®@—a+D@+®*
2i + 3

:|<E1]+ly]va_1|

— )+ a4+ D — 6+ o+ DIXE, j,j,a + 1

1 U+a+D@+a+m@—®@+a+nT N
+2(J’+1)[ 2j + 3 (E,j+1,j,a+1. (28
Exponentials of the angular momentum operators {B, A}™ = [{B, A}V, 4], 2110

will prove useful. From (2.6) and (2.7) we obtain,
by simple expansion of the exponential as a power
series in the scalar 3,

exp [8Ss] [p, v) = €7 |p, ),
exp [B(S: — ¢S] Ip, 7)

S Y N (e e
B Z‘:r! [(s+7)!(8—'y —T)'] Ip,'Y+T>,

exp [B(S: + 8))] |p, 7

— ”.!_ﬂ_t 4+ s —~v+ ! 3
= l:(s —Nis+v— r)!} lp,

(E: i, m, a| €xp [ZBJ?»] = e‘.ﬂ"I(E; 3, m, al:
(E: j; m, al €xXp [B(Jz - z']l)]

G+ mIG— m ) .
=% [‘—mw+m—ﬂJw*m

(E, j, m, a| exp [B(J; + ©J))]

G—mG+m+nP. .
; [(]'l" m)l(j — —T)':l (E; .7,m+(r, aol)
2.1

An operator identity which will be useful is the
following: Let 4 and B be any two operators. Then

i {B, A!(n)
n! !

=0

Y — 7‘), (29)

-7 al)

¢ “Be* = (2.11)

where {B, A}™ is defined by induction by means
of commutators

(B, A} = B.

3. EXPLICIT E AND y DEPENDENCE OF
THE TRANSFORMATION FUNCTIONS

In the present section we obtain the explicit E
and ¥ dependence of the transformation functions.
It will be convenient to introduce the operator 7'
defined by

T = exp [—(P; — iP))'(P — P3)(8; — 8] (3.1)
and a new set of kets |p, v) defined by
lp,7) =T Ip, v 3.2)

In (3.1) the operator P = (P? + P2 + P}
We first find the E and v dependence of (E, j,
m, a|p, v¥) and then that of (E, j, m, «lp, v) from

= (E, j, m, Otl T Ipy 7. (33)

First we note that since H and P, commute with
T it follows from Egs. (2.6) that

Hlp,v) = e« [p,7),
Py lp,7) = pi Ip, v)-
Now, from the first of Egs. (3.4),
(E, j, m,a| H |p,v) = «(pXE, j, m,a | p,7), (3.5)
while from the first of Eqgs. (2.7),
(E, j,m,a|H |p,v) = EE, j, m,a|p,7).

(B, j, m,a|p,7)

(3.4)

(3.6)
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Thus from (3.5) and (3.6)

E - Ew(Z’))(E; ihma lp7 'Y) = 0.
The general solution of (3.7) is

3.7

(E,j,m,a l P,
= & — fw(p))F(J; m, o l P 3.8)

where F is a function of its arguments which is still
to be determined. We have thus obtained the E-
dependence of the function (&, j, m, alp, 7).

Now from (2.6)

P.J =P-S. (3.9
Thus on using (2.11) we have
'@®-NT =T'(P-S)T =}
X (Py — iP)(S, + 28,) + PS;. (3.10)

From (3.10), the second of Eqs. (3.4), and the
first three equations of (2.6) we find

®-1 Ip,7) = 3@: — p)ls + 6 — v + 1P
Xpy—=D+prlp,y. @11)

The simplicity of (3.11) is the principal reason for
the introduetion of the basis |p, v). The expression
for (P-J) |p, v) is more complicated.

From (3.11) we have

(B, j, m,a| ®@-]) [P, v) = 3(0: — ip1)
X [+ 26 — v+ DIXE, j, m,a |,y — 1)
+ pv(E, j, m, e | p, 7). 3.12)
But also from the last of Eqgs. (2.7)
E, j, m, a| ®-J) Ip, V)
= k(E)(E, j, m,a|D, 7). (3.13)

Let us equate the right-hand sides of (3.12) and
(3.13). On substituting (3.8) for (E, j, m, «|p, v)
we obtain the following recursion relation for F(j,
m, alp, v) in terms of v:

F(j:m;alp;'Y'—]-)

=2 (@ — 1) :
Tal TG v+ O G melnn, G19

where

7 = (p: — ip)/p. (3.15)

It is clear from (3.14) that F(j, m, alp, v) = 0
if v < a. It is also clear that fory > a, F(j, m, a|p, v)
can be found from F(j, m, alp, a) = G(j, m, a|p)
by induction. We thus represent the general solu-

H. E. MOSES

tion of the recursion relation (3.14) by
— T
F(j: m, o l P, 'Y) = Hu(’Y)(TT’)
1 [@+wm—@T

X o= 2iLe + o)l —
X GG, m,a | p), (3.16)
where H ,(v) is defined by
H@Hx =0 if y<a 3.17)
=1 if y2>oa.

Thus
A\
(B, m, | B,7) = 6 — w5
1 [@+w@—@T
(v — a)!Lis + a)lls — !
X G, m,a | p). (3.18)
Now we wish to use (3.3) to find (E, j, m, «|p, v)-
Since (8, — £8,) commutes with 7 we have
(8: — 18)) [p, 7)
=[e—MNe+r+ D p,y+1D. (319
Thus the operator (S, — ¢8;) acts on [p, ¥) in
precisely the same way that it acts on [p, 7). On
expanding T~ in a power series in (S, — 48,) and
on using (3.19) and the second of Egs. (3.4), one
obtains

=7 r
T p,v) = 2 (1 - 23‘) 7
r=0 p

- 3
X [g + 3:@ i_ z i- :;:] % lp,y +1). (3.20)

We now substitute (3.20) into (3.3), use (3.18) and
absorb [(s — a)l/(s + a)!]! into the still unknown
function G(j, m, «|p).

(B,j,m,a|p,71) = 8B — e ™"

X (s — Y+ 'Y)!]}T(S: v @, Ps/P)G(j; m, o | p)’

X

3.21)
where
T@s, v, @, ) = ':27 H.O(Q1 — x)r—“((__él)
1 (s + !
X r—a)lr—PIs—n (3.22)
‘We now show, however, that
TG, v, a, z)
= (=" + VY6 — S, v, @, ). (3.23)

Our proof will be by induction.
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From (1.11) of Part I
S(s, s, a,2) = 1. (3.24)
From (3.22) which defines T(s, v, «, ) we find
TG, 8, 0,2) = (=37 [@C)l/(s — ). (3.25)

Thus (3.23) is valid for v = s.
Let us assume that (3.23) holds for a particular
value of ¥ and prove that it will then hold fory — 1.
We can easily show from (3.22) that

dT(S, v, & $)/d.’15 = —T(S, v+ 1; «a, x)

for all v.
Then from (3.26) and (3.23) of the present paper
and (2.6) of Part I

(3.26)

d
de(Si'Y - ]-)a; 23)

= (- el gy 10,0,
(3.27)

Then integrating with respect to ,
T,y —1,a,2)
= (=D + v — DY — a)]
X 8@,y — 1, ¢, 2) + K(s, v, o),

where K is a constant of integration. If we can
show that K = 0 we shall have verified (3.23) for
all ¥ by induetion.

From (3.22) we have

TG, v, e, 1)
= H.()(=3)"""[6 + NV — iy — a1, (3.29)
while from (1.10) Part I
S(s, v, @, 1)
= H.ls — /vy — s — M.  (3.30)

We then set z = 1 in (3.28) and use (3.29) and
(3.30) in the resulting expression. It is seen that
K(s, v, @) = 0. Thus (3.23) has been proved.

On using (3.23) in (3.21) we obtain the principal
expression of this section, after absorbing the factor
(s — a)!into G(j, m, alp).

(3.28)

(E,j,myal|Dp,v)
= &E — e«@D(—30)""°[ls — Vs + N
X 8(s, 7, @, ps/P)GU, m, a | D),
where the function @ is still to be determined.

(3.31)
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4. USE OF THE OPERATOR J,

We now evaluate (E, j, m, « |exp [ivJ3]| p, v) in
two ways and further simplify the expression for
the transformation function.

It will noted that

exp [iwJ3] [p, v) = " Ip, 7, (4.1)
where p’ is given in terms of p by
pl = p, cosv + p,siny,
P) = p; CO8Y — P, sin v, (4.2)

P = Ps.

Relation (4.1) can be verified by differentiating with
respect to » and then setting » = 0. Then one has
the sixth equation of (2.6).

Also we have

(E, §, m, a| exp [ivJ5] = "™ E, j, m,a|. (4.3)
From (4.1) and (4.3) we obtain
e"™E, j, m,a | p,7)
=e¢""E, j,mea|p,7), (‘4

which, on substituting for (3.31), leads to an equa-
tion for the yet undetermined function G:

GG, m,a | p) = €7GG, mya | P).  (4.5)
We can easily find a solution of this equation
Let us pick » such that
cosy = p./(p} + P2}, (4.6)
siny = po/ (0} + P2},
and hence
¢’ = in(l — p/p)7, @7
¢ = (@) (1 — p/p . (4.8)
Also
G, m, e | D)
= GG, m, o | @) + P2, 0,p).  (4.9)

Thus G(j, m, ¢|p’) may be taken as a function of the
variables j, m, a, p, ps. Let us define F(j, m, a|p, ps)

by
F(j: m, a, | P, Pa)

= (1 = ps/pP GG, m,a | ). (4.10)
Then the solution of (4.5) is
G(j; m,a I P) = (in)“-mF(j; m, o I y Pa) (4.11)
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and expression (3.31) for the transformation func-
tion simplifies down to

E,j,m,a I ) I
= ¥E — «@D(=D"" """ " s — N (s + NN}

X S(s, Y, a, %)F(j, m, a | p, ps), 4.12)
where the function F is still to be determined.
5. USE OF THE OPERATOR J; 4 i/,
We shall use
exp [B(J: + ¢J)] | p, 1)
= exp [B(S; + 481 [p',v),  (B.1)

where p’ is given in terms of p by

pl = (1 + 38p. — 3i8°p, + i8ps,

pi = —¥8'p + (L — 3. + Bps, (5.2)
pi = —iBp, — Bpe + P

In (5.1) the kets |p, v), which were defined originally
for real values of p; only, have been analytically
continued to complex values of p; through the use
of complex rotations. Equation (5.1) can be verified
by differentiating with respect to 8 and setting 8 = 0.
One obtains the last of Egs. (2.6).

One can show that on defining (p’)* by

@) = @) + @) + @), (6.3)
that
@) =p’ (5.4)
and hence
p=p (5.5)
by taking the proper square root.
From (5.1) and the third of Eqgs. (2.9)
<E) j: m, a! €xp [ﬁ(Jz + 'LJI)] ]p; —8)
= <E; j; m, a l p’) —S>. (56)
But from the last of Egs. (2.10)
<E: i, m, Ot| €xp [ﬁ(Jz + 7"]1)] lp: —-S‘)
_ 'gﬁ_'[ci— m)! G + m+r)!]*
Srl LG4+ m)IG—m—n)!
X <E1 j:m+7')a |P; —8>. (57)

We can therefore equate the right-hand sides of
(5.6) and (5.7).

We now substitute (4.12) into the resulting equa-
tion using the fact that

H. E. MOSES

S(s, —s, a, )
= (_1)a+a2—2.!(1 — x)r{-a(l + x)l—a (5-8)

which follows from Eq. (1.10) of Part I. We shall
also set 8 = ps/(p, + ip:) in this equation. We
note that with this choice of 8

P§ =0,
oy I (1 - &)_1(1 &)_l. 5.9
1 " 7 » + » (5.9)
Indeed the first of equations (5.9) motivated our
choice of 8.
Let us define G(j, m, a|p) by
GG, m, « l D)
_[6- m)x]* .
[(j oot) FGmalp, 0. (6.10)

The result of these substitutions into the equation
obtained from (5.6) and (5.7) is the following equa-
tion for the hitherto unknown function F (5, m, alp, ps),
namely

She)eolieedl]

mrl\p m — 1)l
—~(m=a+r) —(m+a+r)
x (-2 e )
p + p

X F(]: m-+r, o [P:Pa) = G(]r m, a Ip)' (511)

To solve (5.11) we shall introduce the function
H(m) defined by

o = (33 o2

—(m+a) B m
% (1 +%) <_%> F@G,m,a|p,ps). (5.12)

In defining H(m) we have suppressed all variables
except m since Eq. (5.11) is a set of equations
in this variable only. Likewise we define

G(m) = (—’Lps/P)mG(J; m, a Ip)' (5'13)
Then the equation (5.11) becomes an equation for
H(m) which is

fﬂﬁ—r—",'—"i) - G(m).

r=0

(6.14)

In a certain sense, the solution of (5.14) represents
a kernel of the problem of finding the transforma-
tion function.
The solution of (5.14) is
_NR_GG =1 o yiemer
Him) = 3 -2l (-

r=0

(5.15)



RELATIVISTIC PARTICLES

To verify that (5.15) is the solution is somewhat
tricky. But to avoid a lengthy proof we shall leave
the verification to the reader.

We now have the solution of (5.11) which is

F(j:m:alp:Pa)

- [l -2 2)™

2 (pa) ™" GG, m = r,a | p)
xZo( ) =] (5.16)
Equation (5.16) can be written
. [6= m)!]*( 3 2@)».-«
F(]7m7a|p!p3)“‘[(]+m)! 1 p
x (1+2) " B(j,ma,p), 61D
where
R@j, m, e, z, p)
E (zx) DG, m+r,a|p), (5.17a)
r=0 -
with
D(j’ m, a lp) = C(J} .7 + 2m, a lp) (517b)

Thus from (4.12) we can write the final formula of
the present section,

(E: j) m, a |p; 7) = 6(FJ - W(P))(—%)y_a
X 257" "5 — N1 s + NI

T8

X S(s,'y, a, pﬁ)R(j, m, a, 2 ,p). (5.18)
P P
6. USE OF THE OPERATOR J, — i/
We note first that
exp [8(J2 — <J)] Ip, 1)
= exp [8(S. — SV [p', ),  (6.1)

where p’ is related to p by the following expression:

pi = (1 4+ 38")p, + 398 + Bps,
Pi = 38°p, + (1 — 38%)p> — Bps, (6.2)
pi = —iBp, + Bp: + ps.

Expression (6.1) can be verified by differentiating
with respect to 8 and setting 8 = 0. Then one obtains
the seventh of Eqgs. (2.6).

On using (6.1), and the second of Eqgs. (2.9),

(E) i — I al exp [B(J, — iJ1)] lp, 8)

= <E7 j: _j7 o I p,) 8>' (63)
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But on using the second of Eq. (2.10) we have
(B, j, —§, | exp [8(J. — iJ))] Ip, &)
= <E: jy —jx a l P, 8)- (64)
Thus
<E: j: '_j) @ I p, 8) = (Ea j; _j) a l p,) 8)’ (6-5)
On using
S@s, s, a,2) = 6.6)

which follows from (1.11) of Part I, we substitute
(5.18) into (6.5).

‘We then set
B = —@@/pn" 6.7)

which leads to
p=0, p=p, 7' =1 6.8

We obtain the following relation for R(j, —j, «,
ps/ P, D):
R, —j, @, ps/p, p) = (1 — pa/p)™*"
X (1 + Ps/P)i_aR(j; _ja a, 0) P)- (69)
Let us define F(j, , p) by
F(j) o, p) = (_1)i+aR(jy —j; @, 07 p)- (610)
Then _
R(j) _j’ @, T, P) = (]- + x)i_c(l - z)“a
X (=1D)""°F@G, a,p). ~ (6.11)

Equation (6.11) leads to the following theorem:
R(G, m, a, z, p)
= 27" + m)! 8@, m, a, )F (4, a, p). 6.12)
Equation (6.12) is proved by induction by using
dR(G, m, a, z, p)/dx
= iR, m + 1, a, z, p), (6.13)

which follows from (5.17a) and by using Eq. (1.10)
of Part I.

Thus we have the following formula for the trans-
formation function after absorbing some factors
which depend only on j and « into F(j, «, p),

(E: i m, a | D, 7> = & — ew@))(“%)m”

X 0" = M6+ NG — MG+ m)P
(= 2) B i e 2)

x (s, 2)7G, a, ). .14
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7. USE OF THE OPERATOR P,

On using the fourth equation of (2.6) and the
fifth equation of (2.7) we obtain on evaluating
(E’ j) j: alPalp, 8) two ways:

o .« .
k(E)I:] F1 <E7 e Ip: S)

1 [(2j+1)(j—a+1)(j+a+1)]*
i+1 2j 4+ 3

X(E,j+ 1,j,alp,8>:|

+

= Pa(E, hia l P, S). (7.1)

We now substitute (6.14) into (7.1) and use (6.6)
and

SG+ 1L je,0)=@G+Dr—a (72)

which follows from (1.11) of Part I to obtain the
following recursion relation for F(j, a, p):
FG+1,e, p)

_ [ 2 +3
L@+ DN —et+DGtat D)

¥
] F(]; a, P)
(7.3)

This equation simplifies somewhat if we use D(j,
a, p) defined by

DG, e, p) = @ + V)G, a,p). (74
Then
DG+ 1,a0p)
= DG, o, PG —a+ DG+a+ DI (75
Let
Gle, p) = [@ |a)T*D(le| , a, p). (7.6)

Then one can show that the general solution of (7.4)
is

DG, &, p) = [(G — &G + ) 7*Cle, p),
and hence
F(, @, p) = [ + 1)/ — ! G+ )G, p). (7.8)

Thus we come to the final formula of this section,
namely that, for the transformation function,

(E,j,mya|p,7) = 8E — ew@)(=3"""n"""

(7.7)

G—a)l G+ !
X (1 - gﬁ)m-a(l + %)ms(j, m, a, %)

X S(S’ Y, & %)G(Ol, p)'

% [(s—v)!(s+“()!(j— m)! ( + m)! (24 + 1)]* |

(7.9

H. E. MOSES

8. USE OF THE OPERATOR T,

The operator T is defined by Eq. (2.13) of Ref. 4
as being given by

Ta = Sa - (P’J)P—ng,

where p? = (P-P)7.

But on using the first of Egs. (2.6), the fourth
of equations (2.6) and the last of Egs. (2.7) and the
fact that

k(EXE’ i, m, a l P; 7) = P(E; i m,a | P, 7)7

which follows from the presence of the Dirac delta
in the transformation function we have

(Er 7 j; al T, 'pr 8)
= (-E; j; j: al Ss - (P-DP-2P3 IP, 8)
= S(E; i e | P, 8)
- (Ps/p)a(E; 7, J @ | P, 8)' (83)
But in the angular momentum representation we
can use Eq. (2.8) of the present paper to obtain
another expression for (E, j, j, a |Ts| p, s). Equating
the two expressions for this quantity and substituting
(7.9) into the resulting equation leads to the follow-
ing equation for G(«, p)—after a considerable amount
of tedious but more-or-less straightforward reduc-
tion—
(6 — « + 1)(s + 9)'Gla — 1, p)
+ [(s — &)s + a + D*Gla + 1, p)
= —25((a, p),

8.1)

8.2

8.4)

which is a recursion relation in the variable a. It
is readily verified that the solution of this equation
is

Gla,p) = (1) + ! s — )N'Gp), (8.5)
where
Gp) = [29)PG(—s, p). (8.6)

Thus substituting (8.5) into (7.9) we have the fol-
lowing expression for the transformation function:

<Er j; m, a |p7 7) = 5(E - ew(p))
X (_1)n+'y+m+a(_%)7+mn‘y—m

% [(s — NI +MNG—m! G+ m)! @+ 1)]*
E—a)ls+)!§G—a) G+ a)!

1 _ &>m—a(1 &)m-ba
X ( p + D

X 80, m, a, ps/p)S(s, v, a, ps/P)G (D).

8.7
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9. USE OF THE OPERATOR Y,

From the second, third, and the last of Egs. (2.6)
we have

(B, 5,8, 8| §a Ip, 8) = tew(p)(3/0ps)
X (E,s,8,8|p,8) + ie/2[w(p) + 4]
X (02 — ip)2)XE, s,8,s | p,s — 1).
It will be convenient to use §-function relation
E — ew(p) = [«@)/pI0GKE) —p)  (92)

which follows from familiar é-function identities.

Then on absorbing the factor w(p)/p into the
still unknown function D(p), our expression (8.7) for
the transformation function becomes

<E7 iy m, e I P, 'Y) = 8(K(E) — p)

% [(s — N+ NG — ml G+ m)! @) + 1)]*
E—a:+a)lf—a)! G+ a)!

<= B) g sl )
X S(s, ¥, gﬁ)D(p).

Then from (9.1), (9.3), (6.6), and (7.2) we obtain
(E,s,8,5 % |p, 9)

= i@+ 1+ 2)”

9.1)

©9.3)

x {86 ~ ) 2 otr)Dlp)
+ ot )] - 2 (1 - 2)Dihip)

t i Fa (x- %")D@) — «(@)D’(p) %]. 0.4)

In (9.3) k = k(E) and the prime on a function
means a derivative with respect to the argument.

We now want to evaluate (E, s, s, s |Js| p, 8)
a second way using the sixth of Eqs. (2.7). It is
convenient to replace the variable E by k. We note

d/0E = (E/k)o/ok. 9.5)
Thus the sixth of Eqgs. (2.7) leads to
<E; 8, 8, 8| 53 ]p) s>

= /(s + 1)]{sE a% (E,s,8,8]|D,8)
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+ (6#/2’0)26‘(1‘7: 888—1 l P, s)}
L s+ 3]'*{[23 + 1]*[(3 +E
s+1 k
d
+E§c‘]<E,S+ 1,8,8'1),8)
+ ;_”’E (4;8)§<E, s+ 1,88 — 1 I p, 8)} (96)

We now use (9.3) in (9.6). We shall also use (6.6),
(7.2), and the following symbolic function relation

E®)§'(k — p) = ew(p)d’(k — p)
— lep/e@)]ék —p), (9.1

which follows from the well-known symbolic func-
tion identity

@& — y) = fs — y) — f@éx — y), 9.8)

to obtain—after a considerable amount of re-
duction—

(E’ s, s’ sl 33 lp’ s)
1y & 22
= ()" (2s + 1)*(1 + p) D(p)

X {6'(k — pllp) % — 5k — p) pTI@

X [s(l - %)(wz + ww) — 5—3]}

When we compare (9.9) with (9.4) we obtain a
differential equation for the yet unknown function

D(p):

9.9)

D'(p) = —u’D(p)/p(® + p°).
It is easy to integrate this equation. The solution is

D(p) = Culp)/p,

where C is constant,.
Thus the transformation function is now given by

<E7 im,a | D, 'Y) = Cé(k — P)[w(P)/P]
R

x [<s =D+ NG — m)! G+ m)! @+ 1)]*
=)+ )G —a) G+ o)

1 Z)—3>m--m(l 23_>m+az
X ( ¥y + P

X S(j: m, a, Pa/P)S(S; Y, &, p3/p)-

9.10)

(9.11)

9.12)
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From (9.2) this result may also be written
(E: j; m, lp: 'Y) = Ca(E - 5"-’(?))

% [<s — N+ NG — MG+ m! @+ 1)]*
E—als+ )l —a)l G+ o)

X (1 - ]3) (1 + pa) )
(.7 2 ’1]3) (’ 3 ‘! p3)‘
X 8S\j, m, Sls, v, @

10. USE OF THE NORMALIZATION CONDITION

(9.13)

We now need only obtain the constant C to give
the transformation function uniquely. We shall use
the normalization condition

<E) jhm,a IE,; i’y m, a’)

-3 [Eimalnn

T2

X (pr it IE,; j,: m’y 0‘,>
= EkE)E — E')d; ;' 8m.m'ba.a’) (10.1)

which follows from the completeness relations (2.3).
In particular, let us take j = / = m =m' = a =
o' = s in (10.1) and substitute (9.13) in the re-
sulting equation. After a certain amount of re-
duction one is led to the following equation:

Bs+ 7! 1.

c@s+ D

Wl G2 G = (102
But from

i r+9! @+ 1! (10.3)

& ¢ e+

H. E. MOSES

which can be proved in a variety of ways, we can
show by a suitable change of variable of summation

— Bs+ 9! _ (4s+ D!
= 54+ (28 + D!

(10.4)

Thus, choosing C real and positive (which choice
we may always make),

C = 1/2/x. (10.5)
Finally, we write
177—1» = (i)M—'r(pl - i22>m-1
4
y~m v—-m
1 - &) (1 ?2) . (10.
X ( s + P (10.6)

Then on substituting (10.5) and (10.6) into (9.12)
and (9.13) we obtain as our final expression for the
transformation funetion

(B, j,m,a|p,v)=1/VDE — elp))
X (_1)a+‘y+m+l(i)m—7(%)'y+m+l(21 - 7:22)"'_7

P
Y-a Y+a
-2y
X( p +p

% [(s — M E+NG—m! G+ m)! @i+ 1)]*
=)+ — )G+ a)

X S(j, m, a, &)S(s, v, a, p_s)
4 ¥4

Equation (10.7) is then substituted into (2.4) and
(2.5) to obtain (1.3) and (1.4).

(10.7)
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formations of a four-parametric, simply transitive group.

are solutions different from these remains open,

1. INTRODUCTION

N a previous paper' we developed a method to
find homogeneous solutions of the Einstein field
equations with incoherent matter. We now want to
apply this method to find homogeneous solutions
of the Einstein—-Maxwell equations. In order to keep
this introduction short we shall assume that the
reader is familiar with the first two sections of that

paper.

VOLUME 6, NUMBER 8 AUGUST 1955
Homogeneous Solutions of the Einstein—~Maxwell Equations
IsTvAN OzsviTH
Southwest Center for Advanced Studies, Dallas, Texas
(Received 30 November 1964)
In this paper the solutions of the Einstein-Maxwell equations are investigated under the assump-
tion that the metric of the space—time and the electromagnetic field are invariant under the trans-
The results can be summarized as follows: In the case of null electromagnetic fields there are two
different possibilities; If A = 0, all the solutions are Robinson waves; if A = 0, there exists only
one solution, first given here by (6.26). There exist no other solutions for null electromagnetic fields.
In the case of nonnull electromagnetic fields two solutions are found. One metric is known having
been first given by Robinson; we give a new solution of type I. The question as to whether there
where
g = diag (+1, —1, —1, 1), (1.4)
and the equations
e",-.,k -— euk,,' == —Cbc"eb,eck (1 .5)
and the condition
det (eaj) #~ 0 (]. .6)
are satisfied. The constants C,;° = —C,,° are the

The Einstein-Maxwell equations are

By = Agpn + T, (1.1a)

T = 2F,F — 39, F . F'™), (1.1b)
F*, =0, F**,=0, (1.1¢)
Fy = —Fu;, (1.1d)

where A is the cosmological constant, and the semi-
colon denotes covariant derivation with respect to
the metric g;;. This problem in general has a large
literature which we will not review here. We only
mention Witten’s work.”

We call a four-dimensional normal hyperbolic Rie~
mannian space R, (signature —2) homogeneous, if
there exists a four-parametric simply transitive group
G, of transformations, which leaves the metric g5
invariant. We have seen in Ref. 1 that in the case of
a homogeneous space-time we can always find four
covariant vector fields

1.2)
where j = 0, 1, 2, 3 is the coordinate index and

a = 0, 1, 2, 3 labels the vectors, called reciprocal
vectors of G4, such that

€ =¢€ (xk))

gin = €10 (1.3)
11. Ozsvéth, J. Math. Phys, 6, 590 (1965). .
2 L, Witten, “A Geometrie Theory of the Electromagnetic
and Gravitational Fields,” in Gravitation, edited by L. Witten
(Jobn Wiley & Sons, Inc., New York, 1962).

structure constants of G, satisfying the Jacobi identi-
ties

Cab!Cfud + Cbc!C!ad + Ccafcfbd = 0 (1 ‘7)
With the help of the equations
ey, = 8% or &, = 5, (1.8)

we define the contravariant vector fields e’,, called
invariant vectors of G satisfying the equations

ik ik §
ey — e, = —0%,

1.9)

and the condition
det (¢',) = 0. (1.10)

The transformations of G, carry the vector fields
¢*; and e’, into themselves.® We have therefore an
invariant tetrad of covariant vectors ¢*; and an in-
variant tetrad of contravariant veectors e¢’, in each
point of our Riemannian space R,, and because of
the conditions (1.6) and (1.10) it is possible to assign
unique tetrad components to each tensor of R,. The
tnvariant tensors, such as for example B}, T, and
F;i, have constant tetrad components, given by

_ . .
By = RBue'e, T = T,

ik
Fab = Fi)pe’ae by

¢ L. P. Eisenhart, Continuous Groups of Transformations,
(Princeton University Press, Princeton, New Jersey 1933).

(1.12)
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and therefore
b b
R;. = Rue’e, Tit = Tue’ e,
b
F,-k = F,,beaie ke

The covariant derivative of an invariant tensor can
be expressed in the tetrad. For example:

(1.12)

U1 = u.,:,,e“iebk or Fik;l = F,b :,e“,-eb,,e”z, (1.13)
where
Ugp = ucAcab or Fab e = deAdac + FadAdbc (1'14)

and the “Rieci rotation symbols” A,;. are defined by
Aabc = _%(Cbca + Ccab - Cabc)- (1'15)

The raising and lowering of the tetrad indices are
carried out by the tetrad components of the metric

o = ¢” = diag (+1, ~1, —1, —1) (1.16)
defined, similarly to (11), by

ik a b
€ ;€ k.

Jar = gikeiaekb, gab =9
Suppose we have a homogeneous solution of (1.1)
with an F;, which is invariant under the group in
question, then by transvecting (1.1) with e,e*, we
get the algebraic equations

Ry = Agay + Ta,y (1.17a)
Tor = 2(Fo.F,° — 5gaFaF),  (1.17b)
F*, =0, F*,=0, (1.17¢)
Fo = —Fy, (1.17d)
where R, is given by
Ry = A/yyA% — Cpd%s (1.18)

and these equations are necessarily satisfied. Suppose
now that we have a suitable set of constants F,, and
C.:° satisfying the equations (1.7) and (1.17), then
by integrating (1.4), which are integrable since the
Jacobi identities are the integrability conditions of
that system, we can find a set of vectors e}, and
using (1.3) and (1.12) we can construct the metric
and the electromagnetic field, which then satisfy
(1.1). It is therefore obvious that the problem of
Jinding o homogeneous solution of (1.1) with an in-
variant electromagnetic field 1s equivalent to the problem
of finding a solution of the algebraic equations (1.7),
(1.17) for the unknown constanis F,, and C,°. We
want to deal with this problem in the next section.

2. SPINOR FORMS OF THE BASIC EQUATIONS

Just as in the case of incoherent matter, it is easier
to handle our algebraic problem if we use null

ISTVAN OZSVATH

tetrads instead of the real orthonormal tetrads e,
and e*;. We introduce null tetrads o', ,. and ¢**’; as
special linear combinations of the original ortho-
normal tetrads, namely

o'iAA’ = eiaUaAA’7 (2-1)
G'AA,,' = G'AA ,,e",- (2.2)
where
(1 1] (1] 1
1 jo 1 1 0
a
, == 2.
O 44 \/Q 0 i - ol? ( 3)
L1 ] [¢] -1
(1 0 [1] 1
, 1 |o 1 —i 0
44 N
. 75 o ) ; ol 2.4
0 (1] -1

.

In formula (2.3) [(2.4)] a is the row [column] index
and the pairs AA’, --- = 1, 2) are the column
[row] indices, related to the indices 0, 1, 2, 3 by the
following correspondence:

a 0 1 2 3
A4’ 117 127 217 22/, (2.5)
(The numerical values of 4 and A’ are independent
of each other.)* Using o', and ¢**’; as basic
tetrads, the tetrad components of the tensors of
our Riemannian manifold become spinors. (Strictly

speaking, they are not the spinors, but the “dyad
components’ of the spinors. See Ref. 5.) For example

_ i 2
RAA'BB’ = RikU 44'0 BB,

Taa'85 (2.6)

— T k) k

= 140 44'0 BB,

F — F i k
A4'BB' = L' j30 44'G BB’

which are analogous to (1.11). It follows further

that
RAA’BB’ = Raba'aAA'O'bBB';
Tiazg = Taba'aAA’UbBB'; (27)
FAA’BB’ = Fuba'aAA'UbBB'-

Equations (2.7) give the correspondence between
the two sorts of ‘“tetrad components.” The invariant
tensors of our manifold evidently have constant
spinor components. For example,

4B A'B’
€ €

and ¢” < ) 2.8

" are skew symmetric

Jab <> €45€4'B"

AB ’
Where €4By €4'B and e B GA 8

and

_ 12 1re¢
€2 = €3 = € = ¢ =1,

2.9)
‘ R. Penrose and W. Rindler, Application of Spinors to
Relativity (Cambridge University Press, New York, to be
published).
¢ E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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The raising and lowering of spinor indices is carried
out according to the typical rules

o' = %05, o5 = ¢eun, (2.10)
o= Y, Vs = ¥ eurn.
Since F,, = —F,, and F,, is real the spinor,
F.. 55 <> Fa can be split in the following way:
Faarpp = %‘(FABGA'B' + FA'B'GAB), (2-11)
where
Fup = Fp,. (2.12)
We have used here the notation typified by
Guz = Pan (2-13)

for the complex conjugate spinor. (In this equation
A = A’, etc., numerically.) Since the quantities
A, are real tetrad tensors and skew symmetric in
the first two indices, the spinor A.4 szcor ¢ Aabe
can be written in the form

AAA’BB’CO' = %(AABcc'GA'B' + AA’B'C'CGAB)!
(2.14)

where A pccr, which we will call the “Ricci rotation
spinor,” has the symmetry property

(2.15)

AABCC" = ABACC"-

The tetrad tensor Cas. has the same skew symmetry
in its first two indices as A.,.; therefore the spinor
Caa nn cer < Cupo canbesplit similarly, Cuarzzrccr =
1(Capcerearns + G, prorcean) and the “structure
constant spinor”’ Cyzcc: is symmetrie in its first two
indices. Using (1.15) we get the expression

CABCC' = Acus)c' + Ac'(aes)c- (2-16)
We used here the definition
AAA’ = AABBA'. (2.17)

Using (1.17b) and (2.11) we get for the spinor
T 455 <> Ta, the expression

(2.18)

Tiana = _FABFA'B'-

Before proceeding we want to make a remark
concerning the operation “:” defined by (1.13). This
operation can be carried over by translating (1.14)
by means of (2.7). We get, for example,

P
Usa’ BB = %(’MPA'APABB' + Uy Apiaips)

It will be convenient later to extend this operation
for quantities like &4 or £.- by_ s:aying £impr =
%EPAMBB' or %4830 = %EP Apiapp and
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(¢4 + 78) 38r = Easpn + M4 :BB') and (£49s) .cor =
£a:ccm8 + Eams.ccr (we suppose here that the &'s
and 9’s are constant); similarly for quantities like
£* or E*’. Then it follows that

€AB:CC' T 0; €4'Br:cC’ T 0,

AB

A'B’
€ .ccr T 0: €

cer = 0-

It is easily seen that the quantities £4 .55 defined
above are the “dyad components of the correspond-
ing spinor” £,.ss (denoting the spinor indices by
Greek letters). This concept was first introduced by
Newman and Penrose (cf. Ref. 5). Calling the scalars
£4, Fan, ete., spinors instead of calling them dyad
components of the corresponding spinor is in fact a
looseness of terminology—the same as when we call
the scalars u,, F ., etc., tensors instead of calling them
tetrad components of the corresponding tensors. We
do it for the sake of brevity and it should not cause
confusion here.

One sees easily that the equation F**;, = 0 reduces
to

FAB:B(:' = 0.

2.19)

The same holds for F***, = 0. Equations (2.19)
are therefore the Maxwell equations in spinor form.®
Translating (1.14) into spinors and using the afore-
mentioned postulates we get

Fipicor = %(FDBADACC" + FADADBC'C’)- (2-20)

We have seen in Ref. 1 that the curvature spinors
Xancp and ¢4pep. can be expressed by

_ 1 P p’ P P’
X4aBeD = Z{APACP'A 8o  + ApippA pe }
pp’
+ 34.48peCop ,

P Q p
¢ABC"D’ = %{APAOC'A B D’ + APAOD’A BOC’}

(2.21)

+ 34.42p2:Con™ %, (2:22)
and their symmetry properties
X4BCD = XcDAB) (2.23a)
M= 3xa® = e =X, (2.23D)
$aBc'p’ = Gorpran, (2.23¢)

are equivalent to the Jacobi identities. The spinor
Ry4:58 < R, is given by

RAA’BB’ = Neéap€arp’ — Paparsp

(2.24)

(see Ref. 6). From (1.17a) we get therefore the
equations

B

A =)= $x"%, (2.25a)

¢ R. Penrose, Ann. Phys. (N. Y.) 10, 171 (1960).
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(2.25b)

We now observe the following facts. If (2.25a) is
satisfied then (2.23b) is also satisfied, since A is by
definition real. If (2.25b) is satisfied then (2.23c)
is also satisfied, since the right-hand side of (2.25¢)
is, by construction, Hermitian. The only independent
part of (2.23) is (2.23a), which is equivalent to

CABcc'(Acc‘ -+ fiClC) =0, (2.26)

as we have seen in Ref. 1. The spinor form of the
basie equations is therefore

Pupars = FABFA’B'-

F4% 40 = 0, (2.278)
bapan = FypFip, (2.27h)

A = 35", (2.27¢)
Casce(A°° + A°°°) = 0. (2.27d)

QOur algebraic problem is to solve these equations
for the “unknowns’ A szcer and Fup.
3. The Explicit Algebraic Systems

We will denote our unknowns, the components of
A 4pccr, by the following symbols:
cc’
AB 11’ 12 21’ 22/

(3.1)

AABcc'!
11 I3 o p T
(12) € 8 a v
22 T " A v

(see Ref. 5). Maxwell’s equations have the form
(x — 2a)F,; + 2pF,; — «Fyy = 0,

(u — 2v)Fy, + 27F,; — oFy = 0,

—\Fy, + 2xFy; + (p — 2¢)F2, = 0,

—yFy + 2uF; + (1 — 28)Fs = 0.

We have to distinguish two different cases: (1) the
null case: iF,zF*® = 0; (2) The nonnull case:
iF,sF*? s 0, which we will discuss separately.
We realize that the ¢’s are fixed up to spinor trans-
formations, i.e., we are at liberty to use transforma-
tions with constant complex components of the form

k £y = (2 IB;) (3.3)

det (£AB) = +1

in order to simplify, for example, the component of
Fp.

3.2

with

(a) The Null Case

Using (3.3) we can always arrange that
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Fig = (; g) (3-4)

and we still have the freedom to use transformations

of the form .
#0= (. )

(where C is an arbitrary complex number) which
leave (3.4) unchanged, in order to simplify A zcc-
in a convenient stage of our calculations. The form
(3.4) of F,5 means geometrically that we choose one
of the vectors of our basie null tetrad in the direction
of the null vector associated with the null electro-
magnetic field. Maxwell’s equations take the simple
form

(3.4a)

r=2ap=2y,A=0,»=0 (3.5)
and the equation ¢.::5 = 0 gives
y=0. (3.6)

Equations (2.27) which are not identically satisfied
are

o — 3a) = 0, (3.72)
8al@ + 7) + BB + 7) = 0, (3.7b)
aBp + & + 5 — Be = 0, (3.7¢)
(r+8—-a =0, (3.7d)
MF—p+é—¢—pBa+pB+ 1)
—dB+7—a) =0,
m—plp+ e+ & +kla+f) — o5 =2, (3.7¢)
A=—%loa+(@— B —7)— 228+ 1), (3.70)
ola+B— 7+ Q—pa+ps—r1
+@-o+r—e—8 =0, (3.7g)
20@+B—7)+rla+B— 7 =0. (3.7h)
(b) The Nonnull Case
Using (3.3) we can always arrange that
Fir=(5 1) (38)
and we are left with the freedom
£y = (: Ag,), A0 complex. (3.9
The Maxwell equations take the simple form
p=07r=0r=,u=0 (3.10)
and the equations (2.27) read as follows: '
«(Ba + B) — o6 = 0, (3.11a)

y(38 + & — A =0, (3.11b)
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«By + ) + 6B — ) = 0, (3.11¢)

vBe+ 8+ N8 —a&) =0, (3.11d)

@+ o3y — ) =0, (3.11e)

vk + ANBe — &) == 0, (3.11f)

AN+ —B5+ f —at+ 20 =0, (38.11g)
o+ & —ak+ya—B7+20y=0 (3.11h)
A+ FF = Yo — aa — BB + 2a8), (3.113)
A—FF = ~}oh+ 1+ 9+ 209, (B.11)
iy +9) + o —a) ~ 2@+ =0, (3.11k)
e+ & + Na— 8) — 2By + ay) = 0. @.11)

4. SOLUTIONS OF THE ALGEBRAIC SYSTEM
OF THE NULL CASE

~ In this section we obtain all the solutions of Egs.
(3.7). Looking at these equations, one can see easily
that there are only two different cases possible,
namely Case a: @ = 0, r = 0 and case b: ar # 0.
[The case @ = 0, r # 0 is not possible, since (3.7d) —
r = —Band (3.7h) — r = § and therefore 7 = 0,
which is a contradiction. The case a # 0, r = O can
also be excluded since (8.7h) —» 8 = —aand (3.7a) —
f = 3a and therefore @ = 0, which is a contradie-
tion.]
We now consider Case (a).

a=07r=0. 4.1)
From (3.7b) we get
=0 4.2)
and two other equations
A=0,p(p+ e+ & + o5 =2 4.3)

and the rest is satisfied identically. Collecting our
results we have

ce’
AB 112 21 22

“4)

Aspecn
11 I3 '4 P 0
(12) € 0 0 0
22 0 0 0 0

The content of (4.4) is discussed in the next section;
now we examine Case (b).
From (1) and (4) it follows that

g =3aand r = —2a. (4.5)
Substituting (4.5) into (3.7) we have the equations
| (4.6a)
" {4.6b)

ptp=e—E=0,
a{3p — 2¢) + 3a5 = 0,
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—2ak -+ dax — plp + 2¢) = 2, (4.6¢)
A = —6aa. (4.6d)

The components of 4 4z¢0 are given by
ce’
AB 11 12 21’ 22

Aspec:
11 X T P —2&
(12) € & a
22 2a 0 0 0

Applying the transformation (3.4a) to A pcc-
Aiscer = Apzrr-L52ELEEE,

we get for the new 4,,,2- component the expression
Aine = o + 2aC. Since & = 0 we can choose C
such that 4,,;, = 0. This fact allows us to impose
the condition

g=10 4.7)

without loss of generality. Then it follows from
(4.6)(a) and (b) that

p=10and ¢ =0, (4.8)
and from (4.6)(c)
ak = 1. 4.9
Collecting our results we have
ce’
AB 1 127 210 22
AABCC‘: (4.10)
11 /e 0 0 ~2a
(12 | 0 38 a 0
22 2a 0 0 0
and
A = —6aa. (4.11)

Equations {4.4) and (4.9) contain all the solutions
with null electromagnetic fields. We made the dis-
tinction between the two cases rather formal. But
one observes that in the Case a, A =0, and in the
Case b, A = 0, both of which are invariant state-
ments; therefore, we want to refer to these cases
accordingly. We evaluate these in the section fol-
lowing the one immediately below.

5. SOLUTIONS OF THE ALGEBRAIC SYSTEM
OF THE NONNULL CASE

In this section we obtain some solutions of (3.11).
We make the following statement: Equations (3.11)
allow solutions only in two cases: case & x = ¢ =
v = A = 0; case b xovA # 0. We show at first that
¢ == 0 is equivalent to ¢ = 0.

That x = 0 implies ¢ = 0 follows immediately
from (3.11a). To prove that ¢ = 0 implies x = 0 we
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show that in the case of 0 = 0, x # 0 we don’t have
any solution. In this case (3.11) reduces to § = —3&
y=»=A=ae =0, A =FF = —4aa, which
obviously can’t be fulfilled.

We now show that » = 0 is equivalent to A = 0.

That » = 0 implies that A = 0 follows immediately
from (3.11b). To prove that A = 0 implies » = 0 we
‘show that in the case of A = 0, v % 0 we don’t have
any solution. In this case (3.11) reduces to

a=—38e=k=0=py=0A=FF = —488,

which obviously can’t be fulfilled.

If we can exclude the case k = 0,0 = 0, » # 0,
A#0aswellagsthecase k # 0,0 #0,» =0,A =0,
we have proven our statement.

If «x = ¢ = 0 and »A £ 0, we get from (3.11f)
e = 0 and from (3.11d) @ = 38 and from (3.11i, j)
A = FF = —pBB which can’t be fulfilled.

If v = A = 0 and «¢ # 0, we get from (3.11e)
v = 0 and from (3.11¢) 8 = 3& and from (3.11j, j)
A = FF = —aa which can’t be fulfilled.

Case a:

k=v=0=A=0. (6.1)
Equations (3.11) read
(2a + B)e — at = 0, (5.2a)
ae + pe = 0, (5.2b)
@28 + &y — 7 =0, (6.2¢)
By + ai = 0, (5.2d)
A+ FF = —}(oz + BB — 20), (5.2¢)
A — FF = —3(yi + e + 2v¢). (5.2

The determinant of the linear system for ¢, & and
¥, ¥ is
d = aa + B8 + 2a8.
If d 52 0 then v = ¢ = 0 and therefore
A = FF = —}(az + BB — 208)
—i(oa + BB — of — af)
= ~la— B - M <0,

which can’t be fulfilled. We have therefore to assume
that d = a& + B8 + 208 = 0, but this is equivalent
to (@ + 8)(« + B) = 0; therefore

g=—a (56.3)

and the equations (5.2) read
ale — & = 0, (5.4a)
aly — ) =0, (5.4b)
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A+ FF = —2am, (5.4¢)
A—FF = =3y + e+ 9, (5.4d)
ve = e. (5.4e)

From (5.4¢) it follows that ¢ = hy where h is real.
Substituting into (5.4¢) and (5.4d) and taking into
account that FF > 0 we see that h > 0 must hold.
Applying (3.9): Aupcer = Aprr LRLELELT. We get

J1211' = AA'hy, lezx' = (-“I/A)a, 11222' = 'Y/AA-

and by suitable choice of A we can arrange that
Ilenrl = |4 1220-| and A ;5. is real. That means that
we can assume, without loss of generality, that

¢ = 7 and @ = a real. (5.5)
Then our equations take the form
8= —a, (5.6a)
aly —9) =0, (5.6b)
A+ FF = —24°, (5.6¢)
A — FF = —3(y + )" (5.6d)

Equation (5.6b) gives two cases:a = O ory = ¥.
If

a =0, (5.7)
we have
cc’
AB 11/ 12/ 21/ 227
Aupece: (5-8)
11 0 0 0 0
(12) ¥ 0 0 ¥
22 0 0 0 0
and
—A=FF =31y +9)7 (5.9)
If
Yy=9=b, (5.10)
we have
cc’
AB 11/ 12/ 21/ 22/
AABOC': (5.11)
11 0 0 0 0
(12) b —a a b
22 0 0 0 0
and
FF=0"-a", (0®*#0),A=—(®+0b). (512)

(If * = &® we get a vacuum solution with a negative
A term.)
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Case b: wwoX = 0.

We did not find the general solution in this case, but
it is very easy to get a solution under the assumption:

(5.13)

In order to preserve the form of (5.13) we have to
restrict (3.9) to

y=kAN=¢58=ae=1.

ie
£y = r 0 ]; .14)
0 ¢*°
(5.14) allows us to impose the condition that
a=a=a (5.15)

without further loss of generality. Equations (3.11)
read

4ax = 04, (5.16a)

3y + 7 = —2ac/x, (5.16b)

3y — 7 = —&/a, (5.160)

3ay + (k — a)e +7) =0, (5.16d)
A+ FF = ¥, (5.16¢)
A—FF=—}oi+ &+ (516

(v + )& — 2a) = 0. (5.16g)

Equation (5.16g) is satisfied if ¥ + ¥ = 0 or « —
2¢ = 0. Since v 4+ ¥ = 0 gives no solution, we write

k = 2a. (5.17)
Substituting into (5.16) we get

8a’ = o7, (5.18a)
¥+5=—o, (5.18b)
3y — 5 = —3%5, (5.18¢)
A + FF = 24, (5.18d)
A—FF = —38d" + @+ 7). (5.18¢)

From (5.18)(b) and (c) it follows that
c=dandy = —10, (6.19)

and therefore we have

g = 2‘/2-0, Y= —a/\/é, A= '—%az, FF = %az,
(5.20)
and
ce’
AB | w 120 21 22
Aupce: | (5.21)

11 % 2VZ2¢ 0 0
a e
az)y | - ol a V5

22 0 0
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6. LINE ELEMENTS IN THE NULL CASE

In this section we examine the solutions of (1.1)
corresponding to (4.4) and (4.10) which we call case
A = 0, and case A # 0, respectively., We show that
in the case A = 0 all the solutions are Robinson
waves and in the case A % 0 we have a unique solu-
tion (6.26).

The totally symmetric spinor ¥ ,zc¢p defined by

©.1)

gives the algebraic types of the solutions (see Ref. 6).
We want to calculate its components.

— 1 AB
ABCD = XABCD — ©§XaB (EACEBD + €AD€BC)

Case A. A =0

Using (4.4) and (2.21) we see that the only non-
vanishing component of Y4pep is

Yun = '_%0'(35 —&é+p+ I-’);

therefore Y zcp can be written in the form

VYarep = 'P(A‘I/B'Pc'/’m; (6-2)
where the spinor y, has the form
Ya= (¥ 0) (6.3)

and where ¢ is a suitable complex number. We ob-
serve that F .5 [see (3.4)] can be written in the form

FAB = F(AFB)y (6-4)
where
F,=(1,0). (6.5)

The meaning of (6.2)-(6.5) is that the solutions
contained in (4.4) are all of type null and the null
vectors ¥; < ¢4 and F; & F, are colinear, Using the
formula

YaVassr = 3 Apans: (6.6)

and (4.4), we see that the only nonvanishing com-~
ponent of this spinor is given by ¢, 4,0 = ¢* Aoy =
—3¢, which means that

lﬁA :BB' = w'ﬁA'ﬁBlpB'; (6-7)

where o is a suitable complex constant. The null
vector ¥; <> ¥, given by

Vi = Yadao't’;
has the covariant derivative
Vi = (\041;41) :BB'UM’:'O'BB,I: = (w + 5’)'Pi‘l’k- (6-9)

Therefore by suitable choice of the function A(x*) we
can arrange that the null vector k; = Ay; satisfies
the condition

6.8)

k,’ 1 M 0. (6.10)
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This result we can express by the following:

Theorem 1. All homogeneous solutions of the Ein-
stein-Maxwell equations with electromagnetic null
fields and A = 0 are Robinson waves.

We have seen that the covariant constant null
vector of gravitational field coincides with the null
vector associated with the electromagnetic null field.
This is a simple consequence of a

General Theorem Found by I. Robinson (unpub-
lished): If the Riemannian space-time R, is such
that (i) the Einstein-Maxwell equations in vacuum
{we mean here the equations

- %gikthFlm),
F*i";,, = 0]

R,’k = 2(F,'1Fkl
Fij = —F, F* = 0,

are satisfied, and (ii) there exists a covariant con-
stant null vector, then it follows that: (a) the Weyl
tensor of R, is of type null; (b) the electromagnetic
field is a null field; (¢) both principal null directions
are the covariant constant one. R, is generally de-
scribed as Robinson wave or plane-fronted wave.

We don’t want to examine here the question how
many different groups are contained in (4.4) and
how many different solutions belong to this class.

CaseB. A =0

Using (4.10), (2.21), and (6.1) we see that the only
nonvanishing component of Y,pep is

Yun = 3&/01;

therefore, exactly as before, it follows that the solu-
tion (we will see that there is only one) is of type null
and the null vectors ¥; and F; are colinear. The
components of the spinor , .p- are given by

BB’
A 11/ 12’ 21’ 227
VYa:pp'"
1 0 —j@  —5v¢ 0
2 —ay 0 0 0
and
Varp = %‘;P,AP’A’B'B by
BB’
A 11/ 12/ 21’ 22’
IETI
, &
1 0 -3 v —3af 0
2/ —ay 0 0 0
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The tetrad components of ¥; < ¥, with respect to
the orthonormal tetrad e*; are given by

1/’a = UAA'a\I/A‘;A' = % l‘plz (1’ 0’ 0’ 1)'

and using

Vo = UAA’aUBB,b(lpA‘;A’):BB'
= "' 0" (Va5 Far + YaPu 887,
we get
0 24 22 0
oo = 0P |70 0 0 T 6
—24 22 0
where
a= A+ ia (6.12)
One sees immediately that
Yoad’ = 0, =3¢ =0, (6.13)
W = $amy’ = 0,
and
o* = HYen¥"" — ¥ =0 (6.19)

(see Ref. 7). The rays are therefore geodesic, having
vanishing shear, expansion, and rotation, but are not
covariant constant.

We want to show that we have a single solution
in this case. Using (4.10) and (2.16) we can calculate

the components of C4pe¢- and then
A4’ BB’ cC’ ~
Cabc =0 a0 114 c%{CABcc'éA'B' + CA'B'C'CGAB}

Cuf = g°Cp o0 (116)],  ©19)

which are structure constants of the group. We give
the results of this calculation, writing down the
commutator relations of the group:

(X:, X5) = (a/2V2 [alz){(S |°“|2 + DX,
- |"‘|2 + DX},
(X5, X1) = (4/2v2 Ialz){(S |"‘|2 + )X,
— @ o] + DX},
(X,, Xs) = v2{aX, + AX,},

(6.16)
Xy, Xo) = (4/2v2 |a[){4 |o]* — DX,
- (8 lalz — 1)X,},
(X3, Xo) = —(a/2v2 lee|*){ (4 lef* — 1)X,
-8 |“|2 — 1)X,},

(Xsy Xo) = 0.

?P. Jordan, J. Ehlers, and R. Sachs, Akad. Wiss. Lit.
(Mainz), Abhandl, Math.~Nat. Kl. Nr. 1 1961.
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Introducing new operators Y, given by

Y, = X,4°%, 6.17)
where 4°, is given by
‘ (1 + 57ep)
glar ° 0 I Hghr
a A
oo 0 AR TvERer Y,
A a
© VEer ElF °
1 ( _ _.L_)
8ol 0 0 1 |alz |
(6.18)
we get the new commutator relations
(YO) Yl) = 0, (Yly YS) = 05
(Y3, Yo) = 0, (YQ, Yg) = 3Y0, (6.19)
(¥, Yz) = Vi, (Ys, Yo) = =Y,

A solution of (1.5) corresponding to (6.19) is given
by

e 1] 0 0
=10 ‘1’ (‘: (6.20)
] [
The reciprocal vectors of (6.16) are given by
&= A% 6.21)
and the metric by
Gir = & i0uls = €0.a"s, (6.22)
where
G = diag (+1, =1, —1, —1)  (6.23)
and
Gos = A% FuAls. (6.24)
Using our formulas we get by computation
o ¢ o 3
9o = TP g IS P CE-)
1 o0 o 1
The metric takes the form
ds’ = (1/2 |af){¢ ™" [d2" do® — (d2)’]
| + @ ~ @), (620)

= —6 |of’.
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The electromagnetic field is given by
Fio = kwy 6.27)
where
k; = (0, 0,0, 2¢7), (6.28)
w; = (0, (@/V2 [, —4/V2 [o]?, 0)
[see (6.12)]. (6.29)

' Integrating the Killing equations
Ginak + gut i F gt =0,

we can see that the maximal group of (6.26) is a
five-parametric one, given by the commutator rela-
tions

(Xo, X)) = 0, (X1, X,) = 0,

(X3, Xo) = 0, (X0, X,) = 3X,,

(X1, Xo) = Xy, (Xs, Xo) = —X,, (6.30)
(Xo, X4) = 0, (X1, X,) =0,

(Xa, X)) = —2X,, (X3, X)) =0,

having in our coordinate system the following in-
finitesimal generators:

1 0 3z° 0 2z
b= 0o 1 =z 0 2

0 0 1 0

0 0 —2* 1

We can summarize our results as follows:

Theorem 2. The Einstein-Maxwell equations with
null electromagnetic field and A # 0 have a single
solution given by (6.26).

7. LINE ELEMENTS IN THE NONNULL CASE

Equation (5.8) contains the group with the com-
mutator relations:

(XI) XO) = 0) (X2; XO) = 0)
X, Xo) = 0, (X, Xs) = ““/éaXo;
(X, X;) = v2bX,, (X, Xi) = —Vv2bX,,

7.1)

where

vy=a+1i (a3 0sincea® = FF = —A).
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A set of reciprocal vectors is given by

o/ 2est 0 0 0
3 . 3
¢, = 0 cos V2bz®  sin vBba® 0 @2
0  —sin v2b2® cos v2bs® O
0 0 0 1

and the line element takes the form
dsa — 2‘\/;az'(dx0)2 _ (dxs)z — (dxl)2 — (dx2)2. (7.3)

The group, corresponding to (4.21) is given by
the commutator relations:

Xy, Xo) =0, (X, Xo) = 0,
(Xl; Xz) = "—‘/—2-ka27 (Xm Xa) = _‘/ébXO)

(le Xs) =0, (X2’ Xa) =0, (74)

where we introduced the new parameter k by the
equation

a = bk. (7.5)
Then from (5.12)
FF=0b0'0—k), A==b0'A+F%) K*<L1). (7.6)

A set of reciprocal vectors is given by

e 0 0 0

e",-=—‘/—%3 01 01 o, amn
0 0 ¢ o
0 0 0 1

and the line element has the form
ds® = (1/20")[¢ (dz°)* — (dz®)*
— (dz')? — e *'(dr?)’];  (7.8)

(7.8) contains (7.3) at k = 0. This solution is known
and was first given by Robinson.®

We now evaluate (5.21). We show that the solu-
tion belonging to (5.21) is of type I. A Riemannian
space—time is of type I if there exist four different
spinors £ satisfying the equation

%ABCDEAEBECED =0,

where Y4pcp is defined by (5.1). That means that
the polynomial
1//1111374 + 4\.011125173 + 6&011221’2 + 491200 + Y2200 = 0,
where z = £ /£ has four different roots. One calcu-

8 I. Robinson, Bulletin de I’Academie Polonaise des Seci-

ences, Serie des Sci. Math., Astron., et Phys. 7, No. 6, 351
(1959).
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lates easily that in our case this polynomial is given
by

x‘—égf—xz—%@x—l-l

=@ — 32v2 + [35]hx + 1)
X (@® —32v2 — 35z + 1) = 0,

and has obviously four different roots.
The corresponding group is given by the commuta-
tor relations

X, X)) =0, (X, X,)=0,
X1, X2) =0, (Xo, Xp) = aX,,
Xy, X3) = —2a(v2X, + X)),
(X,, X3) = —2aX,.

Introducing new operators Y, given by (6.17) where
A%, has the form

7.9)

1 -2v2 0 0
A, =i o 1 0 -0 ,  (7.10)
0 o 1 0
0 o 0 1
we get the new commutator relations
(Y, Y) =0, (Y, Y,) =0,
(Y, Y,) =0, (Yo, Y¥3) = Y, (7.11)

(Yu Ya) = 2Y,, (Yz; Ya) = —Y,.
A set of reciprocal vectors to (7.11) is given by

e 0 0 0

o= |0 T 00 g
0 0 &' 0
0 0 0 1
and g,, deﬁned by (6.24) takes the form
1 —2v2 0 0
o =X -2 70 0 .
0 1 -1 0
0 0 0 -1
and the metric is given by
ds® = a7*{e”**"(dz°)* — 4v2e " da’ dx!
+ 7e7(dx')? + €77 (d2)’ — (d2°)’} (7.14)
[see (5.22)], and
A= —3%a®, FF=1%2 (7.15)
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The electromagnetic field has the form

Fi = 2alki;l; cos o + dnpn,k®1” sin o} (7.16)
where ¢ is given by F = a¢’® and

ki = 1/av2)e™, —2v2¢°,0,1),  (7.17)

L = (1/av2)(e™, —2v2¢™,0, —1). (7.18)

The question remains open whether one could
find solutions in the case xedv # 0 different from
(7.14).
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In this paper I prove the theorem that the Einstein Field equations with dust and electromagnetic
null field have only two homogeneous solutions. I have given a discussion of these two solutions in

in another paper.

1. INTRODUCTION

N another paper * I found two homogeneous solu-
tions of the equations

Rik = ""Au,'uk + (A + %A)g,k + 2F“Fkl, (1.13:)
uiui = 1, Fn, = —'Fkiy FikFik = 0, (1-1b)
F*, =0, F¥*, =0 (1.1¢)

(4 > 0is proportional to the density of the in-
coherent matter and A is the cosmological constant),
given by

dsz — (de)z _ (dxl)z
— 7B+ D) + (@ — 1) cos’ 7'} (da’)’

— 2 cos z' d2’ d® — (do)®, (1.2a)
p>1, A=2/@p+1), A=34p, (1.2b)

ki = =1+ D — /p@p + DI
X (1,0, cos *, 1), (1.2¢)

w; = (0, —sin [(3p + 1)/4p)G" + =),

11. Ozsvath, Two Rotating Universes with Dust and
Electromagnetic Field (Volume to be published in honor of
V. Hlavaty).

[(3p + 1)/4p)tsin 2" cos [(3p + 1)/4pP (@ + 4, 0),

(1.2d)
Fy = ki wy, (1.2¢)
= @+ D,0,~ — 1) cos 2, ~p — 1),
(1.2f)
and
ds' = —(dz°)* — (dz')" + [(p — 1)/4ple’™ (da’)*
+ 267 da® d2® + (d2°)?, (1.32)
ki = [0 + D@~ 1/p@p + DI
X (—1,0,¢", 1), (1.3¢)
w; = (0, —cos (32)4_; 1)}(95" — %,
} 1
(3”—4';—1) ¢ sin (ﬁ%—l) @ — ), o), (1.3d)
Fy = ki wa, (1.3¢)

w =2(-p) @+ 1,0, - D, (p— 1). (1.3f)
I stated without proof Theorem 1.

Theorem 1. (1.2) and (1.3) are the only homoge-
neous solutions of (1.1) with vanishing shear and
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The electromagnetic field has the form

Fi = 2alki;l; cos o + dnpn,k®1” sin o} (7.16)
where ¢ is given by F = a¢’® and

ki = 1/av2)e™, —2v2¢°,0,1),  (7.17)

L = (1/av2)(e™, —2v2¢™,0, —1). (7.18)

The question remains open whether one could
find solutions in the case xedv # 0 different from
(7.14).
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nonvanishing density of matter. ‘“Vanishing shear”
means

Uy = 0. (1.4)

I now want to consider all the homogeneous solu-
tions of (1.1) and in the course of this investigation
there will emerge a proof of the theorem stated
above.

One calls a space-time homogeneous if there exists
a four-parametric, simply transitive group G. of
transformations which leaves the metric invariant.
It is well known that in a homogeneous space—time
one can find four contravariant vector fields ', and
four covariant vector fields e°; (a labels the vectors
and j the coordinatesand a, -~ - , 4, -+» =0, 1,2, 3),
called the invariant and reciprocal vectors of G,
respectively; they are connected by the equations

ei.,e“k = 6ik or e“,-ei,, = 6Gb, (1.5)

such that the metric has the form

Jix = euigabebh (1-6)
where
g = diag (+1, —1, —1, —1). 1.7

The functions e, and e°; satisfy certain partial dif-
ferential equations expressing that the vector fields
e’, and ¢*; are transformed into themselves under
G,

Using the quantities ¢’,5z. and ¢“?’; defined by

o' = (1/V2)E o+ €, o = (1/V2)(E, +ie),
o' = (1/V2)(E, —ies), o' = 1/V2)(E, —¢))

and

oi'" = (1/V2)(e] + €D,
i = (1/V2)(e + i),

i = (1/V2)(e; — i€),
o = (1/VI)E — €,

(1.8)
we can introduce spinors and we find that

1. The components of the spin connection de-
noted by 24,z¢c0r = 1Agacp- are constant.

2. The components of a spinor T,¢:ppr < T
are also constant if T’;, is an invariant tensor field,
i.e., transforms into itself under G,.

Exactly as in Ref. 2 one sees that the problem of
finding homogeneous solutions of (1.1) is equivalent
to the problem of finding a suitable set of constants

A, A, AABC'D’: Fup = FBA

UsB?,

21, 'OiSVéth, Homogeneous Solutions of the Einstein—
Maxwell Equation J. Math. Phys. 6, 590 (1965).
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defined by
Uapr > Uy,
Facpp = %(FABGC”D' + Feiprean) & Fr

satisfying the algebraic equations

(1.9

bapc'pr = %A(UAC"NBD' + uapuge) + FasFeopn,

(1.10a)
A+ 34 = "% (1.10b)
uap u® =1, FF*® =0, (1.10c)
F4% 5o = 0, (1.10d)
Capon (A" + A%%) =0, (1.10¢)
where
Auapr = Aus’p, (1.11)
Cupopr = Acumu' + AD'(AEB)C’ (1-12)

_ 1 P Q' P Q'
X4Bcp = I(APACQ'A BD + APADQ’A BC )

4 3A45reCcn™,  (1.13)
Gascp = HArager A5 + Apaan AT
+ 3448p0.Con®F,  (114)
and
Fip.coo = 3(F sApaco + Fu"Appep). (1.15)

From the fact that A is constant and from the twice
contracted Bianchi identities and from (1.1) it fol-
lows that

W, =0 (1.16)
and
uiau® = 0. (1.17)
The spinor equivalents of these equations are
uAB':AB: =0 (1.18)
and
uAB’:CD'uCD’ = 0) (1'19)
where
UaB' :cD* = 7zl‘("»l«PB'APAC'D' + uAP,fIP'B'D'C)- (1-20)

2. THE EXPLICIT SYSTEM

In writing down our equations explicitly we are
at liberty to choose the time-like unit vector e, such
that

eo =u (2.1)

and the spacelike unit vector e’s such that the null
vector k' defined by F™ takes the form

AN A (2.2)



SOLUTIONS OF EINSTEIN’S FIELD EQUATIONS

It then follows that u.z- and F,z have the form

1 1 o0
w3500
Fap = (g 2) (F # 0 a complex constant). (2.4)

(2.3)

We still have the freedom to make rotations in the
1-2 plane, i.e., we have the spin transformations

("] 0
.BAB = [e _ ]
0 ¢°*

at our disposal to simplify the components of A 4z¢p-
at a convenient stage of our calculations.

We see immediately that the equations (1.10¢) are
satisfied. We denote our unknowns, the components
of A 4pcp by the following symbols:

2.5

cD'
AB 11 127 2 22

(2.6)

Aupep:
11 3 T P T
(12) € 8 T v
22 M A v

m

One sees immediately that Maxwell’s equations take
the form

k=0,0=0,p =27 =26 2.7

From (1.18) and (1.19) we see that
etéty+i=p+r=0 - (28a)
x4y =28 (2.8b)

From the equation ¢,,;-1- = 34 > 0 we get
—e(3e+ &) = 14. 2.9

Since A is real it follows that (e + &) (e — &) = 0 and
from A > 0 we get

e+ é=0. (2.10)
Equation (2.8a) leads to
vy+95=0 pu4+g=0. 2.11)

Using (2.5) we can arrange without loss of generality
that

B+8=0. (2.12)

The equations (2.8b) and (2.9) take the form
r+ v = —28 (2.13)
—4¢ = A. (2.14)

We get from ¢y0:/1- = 0 and ¢,;.o» = 0 the equations
3r—a+8=0 and 74+ a—98=0, (2.15)
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and therefore, using (2.13), we have
T =28,y = —48, a =78 (2.16)

Now it is very easy to compute the other equations
of (1.10)(1). There are as follows:

328° — A — ' = A + 2FF, (2.17a)
608° — de(y + ) = A4, (2.17b)
108° — ex = 0, (2.17¢)

B{de — 3u — 6y + A} =0, (2.17d)
B{—4e + 5u 4+ 2y — 50 = 0. (2.17¢)

One sees easily that (1.10e) are already contained
in (2.17d, ). The equation (1.10b) takes the form

A+ 14 =118 — ¢y. (2.18)

Our explicit algebraic system is therefore (2.14),
(2.17), and (2.18), and we have to find all the solu-
tions of this system. Before doing that we calculate
the components of the shear spinor defined by

Oapc'D > UGk - (2.19)
We find
C'D’

AB 11" (12hy 272
CaBC'D': . (2.20)

11 0 28 —3iN

(12) | -28 0 -—28

22 EY 28 0

If 8 = 0, then, since e # 0, it follows from (2.17¢)
that A = 0, and that the shear vanishes. Therefore
we can distnguish two different cases,

Case 1: B # 0; i.e., shear is present;

Case 2: 8 = 0; i.e., the shear vanishes.

We now discuss these cases separately.

Case 1
B 0. (2.21)
From (2.17¢, d) we get
A=3@r—,n=32r+9, (222
and substituting into our system we arrive at
A = —4¢, (2.23a)
5FF = 2[88° + (v — ¢)° + 4¢°], (2.23b)
258° = e(3v — o), (2.23¢c)
A =118 + (e — 7). (2.23d)

One sees that the right-hand side of (2.23b) < 0,
and the left-hand side > 0, therefore a solution
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could exist only if the magnetic field vanishes, but
then from 838" 4+ (y — ¢)® + 4€° = 0 it follows that
B8 = ¢ = v = 0 which is a contradiction. We can
therefore state theorem 2.

Theorem 2. The equations (1.1) have no homoge-
neous solution with nonvanishing shear.

Case 2
g =0. (2.24)
It then follows from (2.17)(3) that
AN=0, (2.25)
and we are left with the equations
A= —4é A + 2FF = — 7,
A= —dely + u), A =ele —7v). (2.26)
It follows immediately that e = ¥ 4 u or
Y =¢€— p (2.27)
Collecting our results, we can write
cD’
AB 1V 127 210 22
AABcpr: , (2.28)
11 0 0 2e 0
(12) € 0 0 e—u
22 0 I 0 0
A= —4é& FF = 1(2¢ — p)(2¢ + u), A = ey,

where ¢ and u are arbitrary imaginary numbers

subject to the conditions
€e# 0, (2e — w)(2e + p) > 0. (2.29)

Introducing new parameters by the equations

e = 1V2a, u = —2V2ap, (2.30)
we get
A =8 FF = 4a’(p + 1)(p — 1) and A = 34p
(2.31)
with the condition
a#0,|pl > 1. (2.32)

We have seen in Ref. 2 that the Ricci rotation
coefficients A, of the tetrad e’, can be calculated by

AA’ BB’

A — ce’
abe = 0 a7 134

C%(AABCC’GA’B' + AA'B'C'CGAB),

(2.33)
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where
o', = o', (2.39)
which can be written in matrix form
1 o o 1
a4+ _ L fo 1 —-i 0
v, = VB lo 1 i o (2.35)
1 0o 0 -1
The result of this calculation is given by
At
[
ab 1 2 3 4
23 0 —a(p +1) 0 0
31 0 0 ~a(p + 1) 0
12 | 2a(p + 1) 0 0 —2ap
10 0 0 —a(p — 1) 0
20 0 a(p — 1) 0 0
30 0 0 0 0
(2.36)
Applying the formulas
Cabc = —(Acab - Acba)1 C, = gdoaw (2-37)

[see (1.7)], we get the group with the commutator
relations

(X», X3) = —a@p + DX,
X5, X)) = —a@p + DX,
X1, X3) = —2a{(p — DX, + (p+ DXs}, (2.38)
(X, Xo) = —a@p + DX,

(X2, Xo) = a(Bp + DX, (X, Xo) = 0,

and the metric is given by (1.6) if ¢°; denotes a set
of reciprocal vectors of (2.38). We have seen in Ref.
1 that we are thus led to (1.2) and (1.3) only, and,
since (2.28) is the only solution of (1.10) with non-
vanishing density of matter, we have established
Theorem 1. Theorems 1 and 2 lead to Theorem 3.

Theorem 3. (1.2) and (1.3) are the only homoge-
neous solutions of (1.1).
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According to a recent theorem proved by Derrick, no absolutely stable time-independent particle-
like solution of finite energy is obtainable from a large class of Lorentz-covariant scalar wave theories.
We study a solvable nonlinear scalar wave theory and derive a rigorous metastable particlelike solution
of finite energy, a quasistatic solution having a rate of dissolution which is free to be arbitrarily small
relative to the associated particle rest mass. Derrick’s theorem notwithstanding, the specific example
presented here suggests that particlelike quasistatic solutions to a nonlinear scalar wave theory may
still be of some relevancy to meson field physics, where no absolutely stable but instead metastable

elementary particles are present.

I. INTRODUCTION

N a recent paper, Derrick' proves a theorem that
precludes the existence of static (time-independ-
ent) stable solutions of finite energy for a wide class
of nonlinear wave equations, namely, for scalar (or
pseudoscalar) field theories derived from a Lagran-
gian density of the generic form

L= (8 — (VO — f(8), 1.

where the admissible wave field 8 = 6(x, ¢) is a
piecewise C° scalar function with respect to x and
tand f(6) is a certain piecewise C* function of 6.
[The continuity classes prescribed here for the func-
tions 6(z, t) and f(#) are sufficient for Derrick’s
original proof and for the dynamical stability gen-
eralization® shown in Appendix A.] According to
Derrick’s result, the nonlinear wave equation which
follows from a Lagrangain density (1.1),

§ — V*0 + () = 0, 1.2)

has no time-independent localized solution 8 = 6,(x)
that is stable® and with a finite static field energy
(a finite “‘particle rest mags”),

By = Blo] = [ (V6 + {6 P (L3)

Thus, within the realm of purely classical field
theory, the theorem of Derrick asserts that no stable
spinless particlelike solution is obtainable from a
large class of Lorentz-covariant scalar wave equa-
tions.

1 G. H. Derrick, J. Math. Phys. 5, 1252 (1964). Also see
U. Enz, Phys. Rev. 131, 1392 (1963), and papers cited
therein.

2 That the second variation of the energy functional (1.3)
about 6 should be nonnegative is the stability criterion
evoked by Derrick. In Appendix A we show that Derrick’s
necessary condition for a stable 6, the requirement §2E, > 0
about 8y, is in fact necessary and sufficient for a 8, that is
dynamically stable in the more general sense of Liapunov.

It is important to note that Derrick’s result does
not preclude the existence of metastable particlelike
solutions of finite energy, solutions having rates of
dissolution which are very small relative to their
quantum-theoretic characteristic frequencies F,/h
based on the rest mass energy (1.3). This indeed
is the actual situation in nature, for there are a
certain number of well-established metastable spin-
less elementary particles (x and K mesons), but no
stable spinless elementary particle is known to exist.
In the light of Derrick’s theorem, the question arises
as to whether metastable (quasi-static) particlelike
solutions of finite energy can be derived from a
nonlinear scalar field theory based on a Lagrangian
density (1.1). An affirmative answer to this question
is given in the present paper. By concentrating atten-
tion on a specific nonlinear scalar wave theory, we
are able to present an example of a static particlelike
solution which can indeed be metastable if an ap-
propriately large value is assigned to a certain con-
stant of integration. In other words, we obtain a
rigorous quasistatic particlelike solution having a
rate of dissolution which is free within the classical
field theory to be arbitrarily small relative to the
associated particle rest mass energy E,.

II. A SOLVABLE NONLINEAR
SCALAR WAVE THEORY

We consider the theory based on the Lagrangian
density (1.1) with
f(8) = —g6° (g = positive physical constant),
@.1)

and so the associated scalar wave equation (1.2)
takes the form

—§4 V0 + 3g6° = 0. 2.2)
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The singularity-free static and spherically sym-
metric solution to Eq. (2.2) is given by®

6= 8, = Z(Z'g + )7, (2.3)

in which r = [x| and the ‘“‘size parameter” Z is a
free (positive or negative) real constant of integra-
tion.* It is an elementary matter to verify that (2.3)
satisfies Eq. (2.2):

14

Z
vie, = o (ry) = d

2 Z4
7d7< +1)

Zg d — ___3z5g(Z4g + 7_2)—5/2

o @9 + 7

= —3g0§. (2.4)

The static field energy (1.3) associated with the
solution (2.3) is also computed easily:

© 2
E, = 41r‘/; [(%%’) — 908]7‘2 dr

_ 2 (7' “Z4g7')
_4"Zfo @7 + )¢
® (st -—s)ds ':r2
o T et D

That the static field energy E, = #°/2¢? is entirely
independent of the size parameter Z in the solu-
tion (2.3) was to be expected, because the general
expression for the static field energy (1.3) with (2.1)
is a scale-invariant quantity,* and therefore the rest
mass of any of the particlelike solutions is prefixed
in the theory. Also of some interest is the nonanalytic
character of E, about g = 0, showing that the non-
linear term in (2.2) is not generally amenable to a
rigorous perturbation-theory treatment even if g is
taken arbitrarily small.

Let us now consider the dynamical stability of
the solution (2.3). With the perturbed general solu-
tion about 6, given by

0 — 00 + Z Ekl Re [cklm 1klym],

k,l,m

2.6)

in which the £’s are real functions of r, the ¢’s are
complex constants (small in magnitude but other-

8 The static and spherically symmetric specialization of
(2.2) produces a so-called Emden equation, familiar in astro-
physics, e.g., 8. Chandrasekhar, An Introduction to the
Study of Stellar Siructure (University of Chicago Press,
Chicago, Illinois, 1939). However, Eq. (2.2) itself is quite
distinct from the dynamical equations ordinarily encountered
in astrophysics.

¢ It should be noted that the “size parameter’” Z is a
constant of homology, stemming from the scale invariance
of Bq. (2.2), 6(x, ) — uB(u?x, u2%) (u # 0). In general, this
scale invariance gives rise to equivalence classes for the
solutions to Eq. (2.2) with Z parameterizing the members of
a particular equivalence class of solutions in Eq. (2.3).
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wise arbitrary), and the Y’s are the well-known
complex spherical harmonics; the linearization of
(2.2) with (2.6) produces an eigenvalue equation for
the £’s

d2

ey e
which must be supplemented here with the appro-
priate boundary conditions for a singularity-free
localized perturbation,

1 [Ekl(’,‘) ] 0.

Equations (2.7) and (2.8) constitute a Sturm-Liou-
ville-Schrédinger eigenvalue problem in which &’
plays the role of an “energy’’ eigenvalue and the
quantity

ZL;E—D + 15go:]su =0 @7

£.(0) = 0, 2.8)

—15g8, = —15Z*g(Z*g + *)~* 2.9)

acts like an attractive ‘“‘potential.” In conformity
with Derrick’s theorem, there is a ground state with
a negative energy eigenvalue associated with the
effective potential (2.9). That is, there existsan! = 0
eigenfunction &, with £* a minimum and negative
in value, thus with k purely imaginary, and so the
associated perturbation term in (2.6) generally grows
exponentially with time in a dynamically unstable
fashion. By performing some straightforward an-
alysis, the “ground state” eigenvalue min ¥* =
—A2 (< 0) is determined approximately in Appen-
dix B, from which we obtain the approximate rate
of exponential dissolution of the solution (2.3),

N =2 (1.9)/7%g1. (2.10)

We note that \;* is of the order of the characteristic
time for propagation of infinitesimal disturbances
through the particlelike solution (2.3) (‘“‘particle
radius” of the order Z%?), and so the result (2.10)
is consonant with naive physical intuition. It follows
from (2.5) and (2.10) that the dissolution rate to
rest energy ratio

N/E, = (0.39)/2°

can be made arbitrarily small by letting the absolute
value of the size parameter |Z| take on a sufficiently
large value.

In summary then, the static particlelike solution
(2.3) has a finite rest energy and is metastable
provided that |Z| is large, corresponding to a solu-
tion which is relatively small in maximum field
magnitude but relatively large in spatial extension.
Such a solution, one which is not highly localized
or concentrated about a point in space but rather

2.11)
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global in charaecter, is indeed more in harmony with
the qualitative notion of a “classical particle” that
is obtained by applying a correspondence principle
argument to the quantum field theoretic deseription
of a one-particle state. If the term ‘‘particlelike”
is understood to embrace time-independent solutions
of finite energy that have a rather global (instead of
2 highly localized) character, the specific model
theory considered here suggests that such ‘‘particle-
like” solutions to nonlinear scalar wave theories may
still be of some relevancy in meson field physics.

Note added in proof: A paper by R. H. Hobart
[Proec. Phys. Soc. (London) 82, 201 (1963)] has come
to the author’s attention. Although not cited by
Derrick,' this paper by Hobart establishes the in-
stability of nonsingular time-independent spherically
symmetric solutions to equations having the generic
form (1.2). Derrick’s theorem follows as a natural
extension of Hobart’s result for spherically sym-
metrie solutions.

APPENDIX A: EQUIVALENCE OF STABILITY
CRITERIA FOR GENERAL STATIC SOLUTIONS
OF FINITE ENERGY

Here we show that Derrick’s necessary condition
for a stable 8,, the static energy requirement

FE = H@/dOE (6 + ellmo
= [ (Vo + 476007 ' 2 0

with both 6, = 6,(x) and w = «(x) independent
of time and piecewise C° functions with respect to x,
is in fact a necessary and sufficient condition for
a 0, that is dynamically stable in the sense of Lia-
punov.’ To derive the dynamical stability criterion,
we make the perturbed field depend on time by
putting

(A1)

8(x, t) = 6,(x) + w(x) cos ki, (A2)

where the constant k may be either purely real or
purely imaginary and |w(x)] < [6,(x)] for all values
of x. By substituting (A2) into (1.2) and retaining
only the terms linear in w, we obtain an eigenvalue
equation for k* and w,

(V2 — 3"(8) + k) = 0, (A3)
which can be recast in the form of a variational

principle,
o' =0,

¥ = [ (Ve + 317 d'x [ [ d*x].-l

& See, for example: W, Hahn, Theory and Application of
Ligpunov’s Direct Method (Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1963), pp. 5-10.

(A4)
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Now if f(8,) is piecewise continuous and if %*
is negative for a certain admissible (piecewise C*
funetion) o, &* will be stationary about some negative
value of k*; we shall then have a purely imaginary
eigenvalue for k and thus a dynamically unstable
static solution 6,(x), according to (A2). Hence, with
the hypothesis that f(8) is piecewise C?, a comparison
of (Al) and (A4) shows that Derrick’s static energy
requirement 8°E, > 0 for all admissible w is actually
necessary and sufficient for a dynamically stable
solution 6.

APPENDIX B: GROUND STATE EIGENVALUE
FOR EQS. (2.7) AND (2.8)

By substituting (2.9) into Eq. (2.7) and setting
p=1/2'¢", v = Z¢"\ = Z'¢{(—min )}, (B

we obtain the dimensionless eigenvalue equation for
the “ground state”

2

ol -k o
Here, the “ground state” eigenfunction £, = &g
with { = 0 and k* = —XZ a (negative valued)
minimum is associated with the rate-controlling un-
bounded perturbation term in (2.6). That Eq. (B2)
has a bound “ground state” solution with a real

¥ > 0 such that
Ye
50 =0, lim [e——%-@J -0

(B2)

(B3)

is confirmed most readily by considering the eigen-
functions associated with a simple (mathematically
tractable) potential (e.g., a square-well attractive
potential ) ¥ (p) such that 0 > V(o) > —15(1 + p*)*
for all real positive values of p. Alternatively, by
considering the v = 0 eigenfunction associated with
Egs. (B2) and (B3), an eigenfunction given explicitly
in closed form by the algebraic expression®

b= (p— A+ )7 (B4)

which exhibits a node at p = 1, we infer’ the exist-
ence of one (unique) lower energy state, necessarily
with ¥ > 0 and without a node occurring for some
interior value of p. Since the “‘ground state’” eigen-
function £, and its eigenvalue vy cannot be obtained
by exact mathematical analysis, we work out two
mutually corroborating approximate solutions of the
eigenvalue problem in the following paragraphs. The
first approximate solution is based on a novel

¢ E. Kamke, Differentialgleichungen Losungsmethoden und
Lasungen (Akademische Verlags., Leipzig, 1956), p. 494.

7 For example: R. Courant and D. Hilbert, Methods of

Mathematical Physics (Interscience Publishers, Inc.,, New
York, 1953), Vol. I, p. 458.
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heuristic method, while the second approximate solu-
tion involves a more direct and foolproof Rayleigh—
Ritz procedure.

First, by putting

= (1+ )7 (B5)

into Eq. (B2), we find an equation for the new
dependent variable ¢,

& d
(1 + ) G = 2L + ) + 65
-+ (12 + 671’).(‘1 = 0’ (Bﬁ)
while the boundary conditions (B3) take the form

0 =0, lim [iﬂ;@] ~o.

po®

(B7)

Note that the algebraic denominator in Eq. (B5),
suggested by the exact v=0 solution (B4), eliminates
the second-order character of the p = -7 poles man-
ifest in (B2) with only simple zeros evident in the
coefficients of the transformed Eq. (B6). The general
Fuchsian theory guarantees that the relevant solu-
tion of (B6) is analytic about p = 0 and is thus
expressible as a convergent power series for |p| < 1,

$y = "Z; a.p0", (B8)
in which the a’s are given by a recurrence relation
derived from (B6),

2y n — 4)(n — 3)

Opya = (n + 9 Opiy — (n + 2)(n + 1) Ap
2y(n — 4)
with
a =1, Q =, a = %72 -1 (B10)
From (B9) and (B10) it follows that
ay = %73 - %, . as = 1—2574 - %72: (Bll)
ag = 1‘25')’5 - %’)’3, a7 = ﬁEYG _1’64‘5")’4—' 115‘)’2-
Now observe that the eigenvalue condition
v =315 =~ 193 (B12)

makes a; = a; = 0, and so (B8) reduces to the form
Camin = p + 315)" + 36° + 3(15)%*

+ 3% + 0(°),  (BL3)
with the terms up to order p° being put in closest
possible accord with the functional form for p ~ 1
suggested by the second boundary condition in (B7).

We regard the first four terms in (B13) as an asymp-
totic expansion for {12 With p of the order or

GERALD ROSEN

not much greater than unity, an approximate form
for ¢, in closest possible agreement with the asymp-
totic behavior required by the second boundary
condition in (B7). Thus, we can tentatively regard
(B12) and (B13) as an approximate solution to the
“ground state’ eigenvalue problem.

To corroborate the preceding analysis, let us set
up a variational principle for the solution to Eq. (B2)
and then apply a Rayleigh-Ritz approximation pro-
cedure. Here it is convenient to introduce the new
independent and dependent variables

0<¢< %77)7
wy(¢) = (cos ¢)Ey(p). (B14)

In terms of these new quantities, (B2)is trans-
formed to the equation

¢ =tan"'p

2

%+ 2]
— —
d¢2 + 16 (cos¢)4 w’y 0’ (B15)
which leads to the variational principle
" 10t - (8]
2 ___ 2 2 __ (2
=0 = [16«,, (d¢ b (B16)

0
with w, subject to the normalization condition

/ CH P (B17)
o (cos¢)
and the boundary conditions
w,(0) =0, w,(3m) = 0. (B18)
We seek an approximate solution of the form
wy = 21 ¥ (cos ¢)*(a sin 26 + Bsin4¢),  (B1Y)

where o and B are variational parameters, con-
strained by (B17) to satisfy

o + 8 =1. (B20)

By putting (B19) into the definition part of (B16)
we have

v = 3d" + 328 — 38, (B21)

and thus obtain the maximizing conditions for v*

6 — 2¢)a + 38 = 0,

3« — (1 +2v)8 =0, (B22)

which produce
v = 35 + (851 = 1.88, (B23)

as well as the mixing ratio a/8 = 1[7 + (85)} = 2.70.

A comparison of (B12) and (B23) shows that the
two approximate solutions of the eigenvalue problem
are mutually consistent and give v = 1.90 to better
than 29. Inverting the definition of A, in (B1), we
finally obtain the estimate stated in (2.10).



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 6, NUMBER 8§ AUGUST 1965

On Projective Representations of Finite Groups

P. Rupra

Saha Institute of Nuclear Physics, Calcutia, India
(Received 9 November 1964)

The algebra of projective representation, belonging to a factor system, has been presented. Exact
expressions for the projection operators, Kronecker (inner) direct-product representation, have been
obtained. Formulas for obtaining the characters of all the inequivalent irreducible projective repre-
sentations and the Clebsch-Gordan coefficients have been derived.

1. INTRODUCTION

ECTOR representation theory of finite groups
have long been formulated’"* from the view point
of Physics. Applications of projective (or ray) rep-
resentation® in physical problems have so far been
few and far between.’* Morcover, the expressions
for different algebraic relations of the representations
have not been presented in a systematic manner.
Many of the expressions for the vector representa-
tions will be suitably modified when we deal with
the projective representations. Here we have derived
expressions for the transformation rule for the basis
functions, projection operators, orthogonality rela-
tions, reduction of a reducible representation into
direct sum of irreducible components, Kronecker
(inner) direct product, and Clebsch—Gordan coeffi-
cients of the projective representation, when the
factor systems are known. The scheme of presenta-
tion of the material follows that of Wigner' and
Hamermesh® in the case of vector representations.
The application of the projective representation
theory in the space groups of crystals will be dealt
with subsequently.®

2. BASIC CONCEPTS AND RELATIONS:?

If corresponding to each P & G (where G is the
group) we have a matrix I'(P) such that

I(P)T(Q) = wp,oT(PQ)

lwp,ol = 1 forall P,Q & G, (1)

we call the set of matrices T'(P)s a “projective
(or ray) representation’” of the group belonging to
the particular factor system wp, q. If the correspond-

with

LE. P. Wigner, Group Theory and Its Application to the
Quantum Mechanics of Atomic Specira (Academic Press, Ine.,
New York, 1959).

2 M. Hamermesh, Group Theory and Ils Application to
f’hysicgé 2%’roblems (Addison-Wesley Publishing Company,

ne., 1 N

3'W. Doring, Z. Naturforsch. 14, 343 (1959),

+ E. Brown, Phys. Rev. 133, A1038 (1964).

5P, Rudra, J. Math. Phys. 6, 1278 (1965) (following
paper).

ence is one-to-one, we call the representation
“faithful.” '
The factors wp,¢'s satisfy the relation

@

Conversely, if there are ¢° nonvanishing constants
satisfying Eq. (2), this set form a projective rep-
resentation. (g is the order of the group G).

The concepts of equivalence and reducibility is
the same as in vector representations. Associated
with a particular factor system, there will be a
finite number of inequivalent irreducible representa-
tion. Here we are concerned with the properties of
the inequivalent irreducible representations, if the
factor system is given.

The matrix T(E), associated with the identity
element is a unit matrix, having the dimension of
the representation. Hence

P(P)P(E) = wP,EP(P)

Wp,QWpQ.R = Wp,QrWQ,B-

and
T(E)T(P) = wp o T(P)

will give rise to the relation, since I'(E) commutes
with all the matrices and its product with any
matrix will give the same matrix,

wpp = wgpr =1 3)

for all P &€ @. Also, since

TP)T(P") = wp,p-T(E)
and

T(PTIT(P) = wp-+,»T(E),
we have
DP)" = [wpp-]'T(P™) = [wp-:, 2] 'TPT) (@)
and hence
(4a)

The character is no more a class function; but

Wp, p—=3 T Wp-1 p.

1273
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the absolute value of the character of elements
belonging to the same class is equal, since

Tr P(P—IQP) = (wP“.P/wP—‘.OwP“Q,P) Tr T(Q). )

3. FUNCTIONS FORMING THE REPRESENTATION:
PROJECTION OPERATOR

We first define a set of linear operators O, forming
a projective representation of the group. Wigner
defined a similar sort of linear operators for vector
representations. These new operators will be in
one-to-one correspondence with the projective rep-
resentation matrices. Corresponding to each element
R & G, we define Oy such that its action on a
function ¢(x) is

Ory(z) = [gwR,PwP.R}l/zﬂ'P(R_lx)' (6)

The factors we,q’s are one of the g roots of unity®
and are expressed as exp (P, @), where 0 <
£(P, @) < 2r. The expression [[ [ pc¢ wr,pwp,z] then
takes the form exp [{ X req {¢(R, P) + £(P, R)}]
and the multiplicative term on the right-hand side
is taken as

exp [(i/2g) P;G R, P) + ¢(P, R)}].

Thus the apparent ambiguity of the 2g roots is
avoided. This particular term will occur again in
future and everywhere this meaning has to be
assigned.

Successive operations of two operators O, and
O; is given by

050:¢(x) = Osp(z) = [PIJ; ws.PwP.s]lﬂ”*f’(S_lx)

[ Wg,pWp,sWr, PWP R]l/h
—_ : ) 3 : 0 2
I V(@)

Wsr,PWpP, SR
= wg, p0sr¥(z)
Thus,
OSOR = ws,eosze- (7)

The basis functions forming the uth irreducible
representation will thus satisfy

Or II") 1’) = I‘M(R)il' l”; j) (8)

where a repeated latin index will everywhere mean
a summation over that dummy index. The T',(R);:’s
are the matrix elements of the uth irreducible rep-
resentation, belonging to the particular factor sys-
tem. To prove this we have

050, I”) 't> = I‘u(R)i-'OS Iﬂ) j)
= [I‘“(S)I‘“(R)]“ |I‘) k)’

P. RUDRA

From (7), again
OSOR IM, i) = ws.aosze Il-l, 7/)
= wS,RPu(SR)ki |I»‘, k)-
Thus
T.(S)TWR) = ws,zT.(SR),

and so the I',(R)’s, defined in Eq. (8) form an
irreducible representation of @, belonging to the
factor system wg 5.

The Wigner projection operators will take a mod-
ified form to tally with projective representations;
we shall define it as

1
2

REG WR—1,R

P A(tn = Tu(B™);i0z. )
Thus P{" acting on an arbitrary function y will
give the 7th basis of the uth irreducible representa-
tion of the group, for arbitrary but fixed value of j.
Then we can write

u, 3) = RZ :

€q Wrp—1 R

Tu(R™)::0z¥. (10)

Proof follows easily:

Os l”" 7’)
1
= 2

RE@ W~ R

P#(R—l)HOSOR¢

= Z SR I‘“(R_ls_lS),-,»Ost//

REG WR-1,R

— Z ____“’i-_li___s p“(s)“p“(R“S"),-kOSN

REG WR~2 RWR-18-1,

Pu(R~lS—l)ikosn'P

N

REG WR—18-1,8R

TW(S)s |F; k>-

This form of the projection operator will be useful
in obtaining the matrices forming the irreducible
representations. For that purpose, instead of the
exact I',(R™");/ s, the corresponding characters have
to be used when a combination of the basis functions
would be obtained.

4. UNITARY REPRESENTATIONS

If the matrices forming the representation of the
group are unitary, i.e., if I'(P)™" = I'(P)! for every
P & @, we say that the representation is unitary.

As in the case of vector representations, the pro-
jective representations for a finite group can always
be chosen to be unitary.

Defining for arbitrary vectors x and y,
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=

{x |y} REZG (P(R)x | T(R)Y),

«Q

we have

{T(8)x | T(S)y}

sl“; (TRT(S)x | TR)T(S)y)
- !l] 3 o son (TRS) | TRS)Y)

1

g

3 (r@®Sx | TES)Y)

{x]y}.
The rest of the proof is similar to that for vector
representations.’

5. SCHUR’S LEMMAS: ORTHOGONALITY AND
OTHER RELATIONS

The Lemmas of Schur are exactly valid for pro-
jective representations, since the proof depends on
the operation of the operators Oz’s on a function,
whose nature is the same as in the case of vector
representations. Thus we have:

Lemma I.If T and IV be two irreducible projec-
tive representations of a group G, belonging to the
same factor system, and which have different di-
mensions, then if there be a matrix A satisfying
I'(R)A = AT'(R) forall R € G, then 4 = 0.

Lemma Ia. If T and I be irreducible representa-
tions of the same dimension of the group G, belonging
to the same factor system and if there be a matrix 4,
satisfying I'(R)A = AT'(R) for all R € G, then,
either T'(R) =~ I"(R)or A = 0.

Lemma II. If T be an irreducible representation
of a group G, and if there be a matrix A satisfying
T'(R)A = AT(R) for all R €& @ then, A = (con-
gtant) X I, where I is a unit matrix having the
same dimension as T.

To obtain the orthogonality relations, we con-
struct a matrix,

E—“l—

8€E@ Wg,8—2

4= I(87)XT(S),

where X is any arbitrary matrix. It readily follows
from the basic relations of the factors we g,

I(R)A = AT(R) forall R €G.

Thus from Schur’s Lemma II, A = Al.
We choose X, so that the only nonvanishing

element is

le and A= A,,.z.

= 51»!
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Thus, ‘
1 -
Z F(S l)ilr(s)mc' = Am1Omi.
8€G Wg,8-2
From this it easily follows that
F(S),,,,P(S 1)li = viamlr (11)

8€q Wg,8—»

which takes for unitary matrices the usual form

E INCIP AR

where n is the dimension of the representation. We
can generalize these formulas for two irreducible
representations, belonging to the same factor system
and obtain

8., 5,,.1 y (119:)

§€a Ws, 8- Tu(8)inT(8™ s = su’ailaml (12)
and for unitary matrices,
.SEZG T.(8):mT,(S)s = ;—f- 81084701 (12a)
"

Here n, is the dimension of the uth irreducible rep-
resentation. The relation between the characters
will be

>

8€E@ Wy, 8-1

Xu(S)Xv(S_l) = g0y, (13)

which has the well-known form for unitary matrices,
X xu((9)* = g8, (138)
=

Any reducible projective representation of the
finite group @, belonging to a particular factor

-gystem, will again be expressible, according to

Maschke’s theorem, as a direct sum of irreducible
representations, belonging to the same factor
system;

I‘(R) = Z a,.I‘,.(R), (14)
»

so that the orthogonality relations will give, for the
number of repetitions of the uth irreducible pro-

jective representa,tion,

P> — xBx.(B™), (15)
g kcae Wz
which reduces, for umtary matrices, to
1
a == 3 xByx.(R)*. (158)
g r€¢

The regular representation, belonging to the factor
system wp,q is built up in a8 way similar to that
for the vector representation, except for a factor
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(I Iree wz.pwp. 2] for the matrix I, (R). Thus if
RS; = Si‘ (7' =1,--- ;g):

TroeR)ir = [I] wz.rwr.z]* 8:;,. (16)
rPeq@

Proceeding with this form of the regular representa-
tion, we obtain
2 =g.
B

6. A METHOD FOR OBTAINING THE CHARACTER
OF THE ELEMENTS OF A GROUP

(17)

A formula suitable for obtaining the characters
of all the elements of the group, for all the irreducible
projective representation, belonging to a particular
factor system wp o would be here obtained. From
a similar formula, applicable to vector representa-
tions, Bethe® obtained the character table for the
irreducible representations of the point group.

We define for this purpose

=%y L1 rRYrUITE).

g Rea Wr-1,r

(18)

A/} is some mth element in the ith class of the group,
having g, elements. It can easily be shown that I'";
commutes with the representation matrices of all
the elements of the group. That is,

rS)Iry = Ir(S) forall S &€ Q.

Hence, it follows from Schur’s Lemma II that
7 = A7, Also, the product I';I'} will consist
of integral sums of different I'?’s,

IT} = YT 19)
with
mnp __ nmp
(21 §il "
Since
Tr I'7T = ¢g:. Tr T(47) = g7 [no summation],
we obtain

AT = gt/
where x, is the character of the identity element,
which is equal to the dimensionality of the irreduc-

ible representation. From Eq. (19), the following
working formula would be obtained:

(20)

In the left-hand-side, there is no summation over
1, j. From Eq. (20) and the orthogonality relation,
the character table for all the inequivalent irre-

¢ Hans A. Bethe, Ann. Physik 3, 133 (1929). English

Translation: “Splitting of Terms in Crystals,” Consultants
Bureau, New York.

g:9:x"x; = xC07790G -

P. RUDRA

ducible projective representations of the group, be-
longing to the particular factor system can be ob-
tained. It is to be noted that I' is not, in general,
independent of m, as it is for vector representation.
If any particular I'¢ vanishes, the character of the
corresponding group element xi = 0 for all the
inequivalent irreducible projective representation,
belonging to the factor system.

7. KRONECKER (INNER) DIRECT PRODUCT:
CLEBSCH-GORDAN COEFFICIENTS

The Kronecker (inner) direct-product representa-
tion is defined in the case of projective representa-
tion by

TerB)ir, i1 = (Tu(B) @ TW(R)ir. i

= I;PIE-E wR,pwp,R]'1/2”P,(R);;P,(R)“ . (21)

That T',(R) is a (in general) reducible representa-
tion of the group, belonging to the particular factor
system, follows from the exact calculation

Tuer(BS)it,i1 = (wr,s)  [TugrB)Tugr(S)]ir. 1
or
Ter(B)Ty2,(8) = wg,sTues(RS).

The character for this product representation is then
given by

Xu@v(R) = E}I;IG wR.PwP.E]_l/ngu(R)XV(R)' (22)

As in the case of vector representation, here also,
the product of the jth basis of the uth irreducible
projective representation and the Ith basis of the
vth representation will also form the (§, I)th basis
for the product representation I',g,.

Proof: Let
e, 9 = ¢i@) and P, ) = ¢,(2)
and
ey 350, 1) = Yi@)ds(2).
Then using Eqgs. (6), (8), and (21), we have
Ok |u, 537, 1) = 08[¢L(£)¢:(x)]
= [I] we.pwp. 2] "¢ iR 2)é1(R'z)

PEG

= [}l-EIGwR.PwP.E]_U *[02¥1(2)][0z¢,()]

= Tuey(R)ir. 11 ll‘: i;, k).

Since I',g, is, in general, a reducible representa-
tion, this can be expanded as a direct sum of the
irreducible components, in a Clebsch-Gordan series:

Tuer(R) = ; (o) To(R). (23)
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Using Egs. (13), (22), and (23), we obtain

1 1 -
(wo) = = 2, Xuar(B)x(B™")
g R€¢ Wr -1
1 1 1725 -
=- [IT we.rwr.2] ™ *xu@x, (BB ™).
g r€e Wr .-+ FPEg
(24)
For unitary matrices, this equation takes the form
1 —1/24
(wvo) = = E [H Wg, WP, £ e XM(R)Xv(R)XG(R)*'
g R€E@ PeEG

(24a)

Since |, j; », I) = ¢l¢, forms the basis of the
(in general) reducible representation I'g,, expres-
sible as a direct sum of the different irreducible
representations, the sth basis function o, 7,, 8),
belonging to the 7,th repetition of the sth irreducible
representation in the Clebsch—Gordan series expan-
sion of T,g,, can be expressed as the linear com-
bination of different |u, j; », [)Ys with suitable
coefficients;

|‘7) Toy S> = (f‘) 7; v, 1 l G, Toy S) ll‘-; 350, l);
,m, and l=1,--- m, (25
{u, j; », l|o, 7., s)’s are called the Clebsch-Gordan

coefficients. The reverse transformations are also
valid.

ll‘: 7 l) = Z ("'; Tay sl”’: i, l) l"': Toy 8).

O To

The orthogonality conditions of the Clebsch—Gordan
coefficients remain as usual.’

where j=1,---

(26)

<°"; Tory 8 I By §3 v, l)(l"': i vyl I Gy Tay 8)
= 8::)"87”,15“’)

Z (I"; iy, V I Oy Toy sx"; Tey 8 I By 57, l)

@, Te

= 8;;0u. @27
For unitary representations, these reduce to
(0: 1er8 L1y G50, D) = (w530, U] 0, 70, 8)%,
{uy G37, L] 0y Tary 8" Yy G537, 1| 0y 7oy 8)
= 850+ 8r0re: O0sy  (278)

E (l‘: i, U l 9y Toy 3>*<ﬂ, i, ll Oy Toy 3)

= 6 ii’ 5 it
The Wigner formula, connecting the Clebsch-

Gordan coefficient and the matrix elements of the
irreducible representations would have to be modi-
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fied in the same way as the Kronecker (inner) direct
product. Algebraic calculations give, finally,
(l" iiv, 1 l Oy Toy 8>Pn®v(R)-‘k,il

= Fv.r;(R)-'a(l‘J 7:; v, k | Ty Tay S’). (28)

Using the suitable orthogonality relations, we arrive
at the form

Z 1

REG Wr, R~

I‘p@,(R)mnu .mlﬂ:rﬂ. "(‘R—l).l'l

= ,’% Z <ﬂa my; v, My | 0y Tqy 31)
¢ To

X (‘71 Tey S2 I By M2 v, nz) (29)

and for unitary representations,

2 Pu@V(R)mm: ,mans P,_,,(R):k‘ o
REG

r
=;,Lg- Z(I-"r My vy, M I”’ Tnsl>
¢ Te

X iy ma; v, ng l T, Toy Sa)*. (29a)

For simply reducible groups, where the Kronecker
(inner) direct product of two irreducible representa-
tions of a group contains an irreducible representa-
tion only once, we have the simplified relation

1

REG WR,R-:

PP@'(R)mm; Jmans I‘U(R—l)l.u

= 1% (l‘: my;v, T | g, 81)(0', 8z l Ky, M50, n2) (30)
o

and for unitary representation,

Z Pu®r(R)mm- smane I‘,(R)f,,,

REG
= (g/na)(lh my;v, M I a, Sl)(l"; Ma;v, Ny l o, 82>*- (30a)
In actual calculations, we have to replace everywhere
Pu@v(R)mnu 1My
by
[PIE_IG Wg,pWp .R]_l/sz#(R)mm.Pv(R)nuu .

8. CONCLUSION

Here we have presented the algebra of the pro-
jective representations of finite groups. In the next
paper® we shall apply it in obtaining the irreducible

representations of space groups for special points
of the Brillouin zone.
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A logical extension has been made of Seitz—Koster’s method of space-group representations to the
points on the surface of the Brillouin zone, using projective representations. This method has been

applied in the case of the space group D;t.

1. INTRODUCTION

VER since Bouckaert, Smoluchowski, and Wig-
ner’s treatment® of solutions of the Schrédinger
equation in crystals, attention has been drawn to
gpace groups. Seitz’ and Koster’ have developed
the theory of representations for space groups from
the irreducible representations of the invariant sub-
group of pure translations. The theory has been
completed for symmorphic space groups and for all
the points except for those on the surface of the
Brillouin zone in case of nonsymmorphic space
groups. Zak* has given a method to obtain the char-
acters of nonsymmorphic space groups, based on the
general theory® of obtaining the representation of
a total group, from the representations subduced
by the irreducible representation of its subgroups
of index two or three. Déring and Zehler® have
obtained the character table for diamond in a similar
method. Here we shall extend Seitz* and Koster’s®
method to the points on the surface of the Brillouin
zone using the method of projective representation.”®
Déring® has previously used the idea of projective
representation, to obtain all possible projective rep-
resentations for crystallographic point groups.

We first give a summary of Seitz and Koster’s
method and then give the extension of the method
using projective representations. Finally we give this
method for the space group Dj.

2. GENERAL THEORY OF SPACE-GROUP
REPRESENTATIONS:?.3.10

We define the space-group operations in a slightly
modified form than Seitz and Koster. The operation
of the space-group elements {c|y} on any vector x
is such that

{c|v}x=c+ x, )

where ¢ is a translation and v is a point-group op-
eration. The combination laws and the inverse opera-
tion are given by

{cs I‘Yz}{cl I‘Yl} = {c; + 7€, l‘Ya‘Yl}
and

felv}™7" = {=v"c|v}. @)

The pure translational elements {R,|E} form an
invariant subgroup of the space group except when
there is a magnetic field present, with which we
are not concerned here."* For each point of the first
Brillouin zone, we have an inequivalent irreducible
representation, which is one dimensional:

I'«(R,) = exp ik-R,. @)

For the total space groups these will not, of course,
form the irreducible representations. But the ma-
trices corresponding to the elements of this invariant
subgroup can be brought to the diagonal form

[exp ik, R, ]I 0 oo 0
Iv(R, | B} = 0 lewidaRIL - o, @
0 0 R

1 L. Bouckaert, R
1 F, Seitz, Ann. Math, 37, 17 1936)
31G. F. Koster, “Notes on
Technology, Technical Report No. 8 (1956).
4J. ZaﬁJ Math. Phys. 1, 165 (1960).

R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58 (1936).
roup Theory,” Solid State and Molecular Theory Group, Massachusetts Institute of

¢ H. Boerner, Representatwns of Groups (North-Holland Publishing Company, Amsterdam, 1963).

¢ W. Déring and V. Zehler, Ann, Pﬁsm 13, 214 (1953).
7M. Hamermesh, Group Theory a

Inc Rea.dmg Massachusetts 1962).

Rudra, J. Math. Phy

» W Dénng, Z. Naturfors ung 14, 343 (1959)
10 A good review is given by

Soviet Phys.— Usp. 3, 551 (1961 )]
11 J, Zak, Phys. Rev. 134, A 1602, A 1607 (1964).

Its Applwatum to Physical Problems (Addison-Wesley Publishing Company,
. 6, 1273 (1965) (preceding paper).
. V. Sokolov and V. P, Shirokovskji, Usp. Fiz. Nauk 71, 485 (1960) [English transl.:
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where the k,’s satisfy the relation k; = a;k, where
a,’s are point-group portions of some specified space-
group elements and «, = E, so that k, = k. The
unit matrices with each exponential factor has suit-
able dimension.

Among all the space-group elements of @, there
are some elements {b]8} which has the property
for the particular k vector

bk =k 4+ K,, )

8o that
(5)

where K, is any reciprocal lattice vector. All such
{b|8}’s form a subgroup, K, of the total space
group G. Expanding in cosets, we get

G=K+ {a|a}K + -+ + {an |aa}K. ()

The «/s introduced before are these o’s, so that
p = m. An n-dimensional representation thus breaks
up in the orbits of ak’s each having d dimensions,
go that, n = md. These akK's (t = 1, +-- , m)
are said to be the stars of the particular k vector.
d is the dimension of the irreducible representations
of the point-group portions of K, denoted by Gy(k).

The total matrix for I'{b|8} can be so transformed
that the only nonvanishing block in its first column,
lies in the first row, and this is denoted by I'x {b{8} 1
for different k vectors. This I'y {b|8},,’s are sufficient
to give the matrices of all the elements, 'y {c|y} of G.

The group element {a;|e;} has a nonvanishing
block in the first column, only in the jth row, and
this can be put equal to ', {0|E},,.

For any other space-group element {c|y}, the non-
vanigshing block in the /th column is the mth row
and this is

Teulc | v}m = Txulb | Bl

exp 16k-R, = exp ik-R,,

@

where

{c|vHai |a} = {an |an}{b |8},  (78)

# denotes different irreducible representations of
Gy (k).
For symmorphic space groups

Ty ufb | B} = [exp dk-b]T,(6), &

where I',(8)sare all the nonequivalent irreducible
vector representations of G,(k). For nonsymmorphie
space groups also, the form of Iy ,{b|8},;, given
in Eq. (8), with all the vector representations of
G,(k), form the irreducible representations of @, for
all the points inside the Brillouin zone, but not so,
for points on the surface of the Brillouin zone.
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3. APPLICATION OF PROJECTIVE
REPRESENTATIONS

For treating the irreducible representations of G,
corresponding to k vectors on the surface of the
Brillouin zone, we shall show that if we set I'.(8)
as a projective representation of G,(k) belonging to
the factor system, given below, then Ty ,{b|8},
expressed in the form given in Egq. (8), form a
vector representation of K group.

In order that Iy ,{b|B},, form an irreducible
vector representation of K, the following condition
must be satisfied:

Pk.n{bi Iﬁi}llrk.u{bi Iﬁi}ll
= Tx.{b: + B:b; | B:Bi}us- @

If we write I'y ,{b[8}, = [exp 7k-b] I,(3), then
T,(8)’s must satisfy

T,(BIT.(B) = wp,.s,Tu(B:B), (10)
where

wg; .8, = €xp #(B7'k — k)-b;. 1)
Now since

s BiOBiBI B = Wpi, 88108581 (12)

the T',(8)’s form an irreducible projective representa-
tion”"® of G, (k) belonging to the factor system, given
in (11). Actually this is the general case for every
point of the Brillouin zone. Since, however, §;'k —
k = 0 for all points inside the Brillouin zone, for
both symmorphic and nonsymmorphic G, w,, s,’8
become 1 for all 8;, 8; € Go(k) and TI',(8)’s become
the vector representations. For symmorphic groups,
since all b’s are lattice translations R,, even the
surface points of the Brillouin zone are characterized
by vector representation. For only those points of
the Brillouin zone surface, whose K group contains
a nonprimitive translation, the projective representa-
tions are to be used, the factor system, being given
by Eq. (11). The factor systems being known, the
characters are obtained easily.® To obtain the ma-
trices of the irreducible projective representations,
we operate on any reducible basis the corresponding
projection operator,® replacing the matrix element
by the character. This will give a combination of
the basis functions, from which the basis functions
separately, and hence the matrix elements them-
selves, can be obtained.

4. IRREDUCIBLE REPRESENTATIONS OF
THE SPACE GROUP Dj¢

We now apply the method to obtain the inequiv-
alent irreducible representations of the nonsym-
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morphic space group D, We give only those rep-
resentations corresponding to points on the Brillouin
zone surface, for which the considerations of pro-
jective representations have to be brought in.

The description of the space group is'® D3(C 3,2 1).
The lattice type is I'x. The basic translation vectors
are shown in Fig. 1. They are

1 4
t, = a|0 t2=ao\/§/2 t; =¢c|0]-
0 0

The group operations are
{RlIE}) {Rn+%t3 IC:IS}l {Rn+%t3lC§};
Rat+ 3t | U}, R+ 3|V}, (R.]Usl
The unit vectors in the reciprocal lattice space are

_4r (V31 ) _ Ar
kl_\/?;ao(2 72:07k2_‘/3'a0(0:1;0)7

k, = 27¢;'(0, 0, 1).

Fia. 1. Lattice of D;* with the
position of the rotation axes, and
the projection on the (t;, ts)
plane.

The Brillouin zone and the particular k points of
interest are shown in Fig. 2. Of these the points
Z, U, V, and 8 have the same type of irreducible
representation. The lines L and F and the lines
E and N have similar types.

Point Z. Here, K = @. Thus

Zn{b IB} = Pk,u{b llg}u = [exp ik'b]ru(ﬂ)

when the I',(8)’s belong to the factor system tab-
ulated in Table I. The character table for this pro-
jective representation is given in Table II.
Line L. Here
K 9 {Rn |E}r {Rn + %t3 | Ul}
and so,

G = {0 | E}K + {3t: | C3}K + {it: | C3}K.

TasLE I. Factor system wg:, 8+ for the G(k) at the Z point,

Bi
B E Cit C,? U, U, Us
E 1 1 1 1 1 1
Cyt 1 1 1 1 1 1
Cy? 1 1 1 1
171 1 e2ri/3 edmils eiril3 e2r3!/8 1
l_’]2 1 eril3 edrils etrils e2ril3 1
173 1 e27ii3 eirils esrils e2xil3 1

A Ry
=
: 3
A\Y) 1 N L
| !
] "-.i----“‘-—-‘— ------ -;—:l‘\.~\
K /54.\ 7 —
“ | / i K,
x ' !
. ’Ll'.":‘"“""‘““: s
¢'_:_____:~_;_~“—:’5;__% - Dy,

Fi1a. 2. Brillouin zone for Djt.

12 G. Ya. Lyubarskii, The Application of Group Theory in
Physics (Pergamon Press, Inc.,, New York, 1960) (English
translation). '

TasiE II. Character table for the projective representations
of G(k) at the Z point.

B
Xu(ﬂ) E Cst Cs? U, U: U,
x1 1 etrils  gwils  garils  ghwils 1
Xs 1 etrils  gails  _girils _gieils ]
X3 2 —etrils  _g2ril3 0 0 0
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TasLe III. Factor system ws:, ; for the Go(k) on the line L.
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TasLe V. Factor system ws:. 8 for the Go(k) on the line E.

Bi

By
Bi E U, Bi E U.
E 1 E 1
[j1 1 641“3 U2 1 ezn'/s

Tasre 1V, Character table for the projective representations

TasrLe VI. Character table for the projective representations

of G'4(k) on the line L. of G¢(k) on the line E.
8 8

x4(8) E U, x.(8) E U.

X1 1 oowils x1 1 erils

X2 1 —e2rila X2 1 —e¥il3

The factor system for G,(k) is given in Table III and the corresponding characters (which coincide
with the representations in this one-dimensional case) is given in Table IV. The matrices of all the group

elements can be obtained from the following ones:

([exp ik-R,]T(E) 0 0
LR, |E} = 0 [exp iC3k-R,]T,(E) 0 ,
| 0 0 [exp iC3k-R,]T\.(E)
r[exp k- 3t,]T.(UY) 0 0
L5t | Ui} = 0 0 [exp (—iCsk-3t)ITW(UY) | ,
L 0 [exp (—iC3k-3t,)]T.(U) 0
[0 0 [exp ik-t,]T'.(E)
L.{3t: | C3} = | TW(E) 0 0 ’
0  [exp ik-t;]T.(E) 0
0 [expik-t,]JT.(E) 0
Lidts [Ci} =] O 0 T(E)|-
LTW(E) 0 0
Line E. Here
K 5 (R, | E}, {R., + 3t: | Us}.

Thus

G = {0 | E}K + {3t | C3}K + {it: | C3}K.

The factor system for Go(k) and the corresponding characters (which again coincide with the repre-
sentations) are given in Tables V and VI. The matrices are

[exp ik-R,]T.(E) 0 0
E,R,|E} = 0 [exp iC3k-R,]T,(E) 0 '
0 0 [exp iC3k-R,]T.(E)
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[T,(U.) 0 0
Efit: [Usb =] O 0 [exp (—ik-3t)ITW(US) | ,
L 0 [exp (—1k-§t)]T.(Us) 0
[0 0 [exp ik-t,]T.(E)
E,{3t: | C3} = |T(E) 0 0 ,
L 0 [exp ik t,]T.(E) 0
0 [expik-t,]T.(E) 0
Efit |Cs}=| 0 0 I'(E)|-
(T.(E) 0 0
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Separation of the Interaction Potential into Two Parts in Treating Many-Body

Systems. I. General Theory and Applications to Simple Fluids with
Short-Range and Long-Range Forces*
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Systematic methods are developed for investigating the correlation functions and thermodynamic
properties of a classical system of particles interacting via a pair potential v(r) = ¢(r) + w(r). The
method is then applied to the case in which w(r) is a “Kac potential”’ w(r, v) = v’¢(yr) (v the dimen-
sionality of the space) whose range v~ is very long compared to the range of g(r). Our work is related
closely to the work of Kae, Uhlenbeck, and Hemmer. The main new feature of our method is the
separation of the correlations, e. g., the two-particle Ursell function %(r), into a short-range part
%(r, v) and a long-range part $(y, v), y = yr; r the distance between the particles. The two parts of
¥ are defined in terms of their representation by graphs with density (or fugacity) vertices and K-
and ®-bonds, K(r) = e¢f2 — 1, & = —pw. A resummation of these graphs then yields a simple
graphical representation for the long-range part of the correlation functions in terms of graphs with
&-bonds and “hypervertices”” made up of the short-range part of the correlations. This representation
is then used in this paper to make separate expansions of F*(r, v) and FZ(y, v) and through them of
the thermodynamic parameters in powers of v. Explicit calculations of the Helmboltz free energy is
carried out to a higher order in v than done previously by Hemmer and it is shown how to carry
out the calculation, in principle, to any order. The general method is further applied (in separate
articles) to lattice gases, plasmas, and to the special problem of critical phenomena.

L INTRODUCTION

HIS paper is the first in a series dealing with
classical equilibrium systems. The system dis-
cussed in -this paper, where the general formalism
is developed, is a fluid of point particles interacting

* Supported by the U. 8. Air Force Office of Scientific
Research, the National Science Foundation, and the U. S.
Atomic Energy Commission.

{fOn leave of absence from the Hebrew University,
Jerusalem.

via pair potentials »(r). [Later papers will deal with
lattice gases' (Ising spin systems), and plasmas.’]

The problem, as usual, is to obtain the thermo-
dynamic properties and low-order correlation func-
tions of the fluid from the properties of the inter-
atomic potential »(r) believed to consist of a very

1 8. Baer, J. L. Lebowitz, G. Stell, and W. Theumann (to
be published in J. Math. Phys.).

2J. L. Lebowitz and G. Stell, Bull. Am. Phys. Soc. 9,
105 (1964); (article to be published in J. Math. Phys.).
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strongly repulsive short-range part and a weaker
attractive part of longer range. Of particular interest
are the properties of the system at liquid densities
and the nature of the ever present phase transition.
For these purposes the usual virial expansion is not
of much theoretical use. As has been shown recently
it is possible for the virial expansion to diverge at a
density which is either lower or higher than the
density at which a phase transition occurs.® Also
the method often used in the theory of classical
fluids, that of approximate integral equations for
the radial distribution function, appears to be quite
useful for deseribing the properties of systems inter-
acting via short-range repulsive forces (e.g., hard
spheres) but has been less useful for representing the
effect of the attractive part of the intermolecular
potential,* the part responsible for the existence of
the liquid.

This suggests developing a theory, or method,
which would use as a reference system, or zero-order
term, a system of particles interacting via the short-
range repulsive part of the potential only: in con-
trast to the virial expansion which has the zero
density gas as a reference system. One such method
that has already been used, successfully, for fuids
and spin systems employes a high temperature ex-
pansion.® The method we shall consider is somewhat
different and consists essentially of an expansion in
the ratio of the ranges of the short-range and long-
range part of the interatomic potential. The idea
of separating the intermolecular potential into a
short-range repulsive and long-range attractive part
goes back to van der Waals® who used it to derive
the famous equation of state bearing his name.

A precise mathematical formulation of van der
Waals’ idea has been given by Kac’ and utilized
extensively by Kac, Uhlenbeck, and Hemmer.” They

3 J. L. Lebowitz and O. Penrose, J. Math. Phys. 5, 841
(1964); 0. _Penrose, ibid. 4, 1312 (1963).

4 A major obstacle has been the difficulty in obtaining the
solutions of these equations in a tractable enough form to
be sure just what they predict about liquids, especially in
transition and critical regions. Furthermore even where these
equations have been solved numerically it is difficult to
assess their worth because of uncertainty of the exact form
of intermolecular potentials of real systems and lack of
molecular dynamical or Monte Carlo results comparable in
accuracy to corresponding hard-sphere results.

. Zwanzig, J. Chem. Phys, 22, 1420 (1954); E. B.
Smlth and B. Alder, zbzd 30, 1190 (1959), H. L. Frisch,
E. Praestgaard, and J. L Lebow1tz, Bull. Am. Phys. Soc. 9,
(1964); C. Domb, Advan. Phys. Soe. 9, No. 34, 35 (1960);
M. E. Fisher, J. Math. Phys. 4, 278 (1963

6 J. D. van der Waals, Dlssertatlon, Leiden (1873); L. 8.
Ornstein, dissertation, Leiden (1908).

7 M. Kage, Phys. Fluids, 2, 8 (1959). M. Kac. G. Uhlenbeck,
and P. C. Hemmer, (abbrelva,ted UH), J. Math. Phys. 4,
216, (1963); UHK, dbid. p. 229; HKU, dbid. 5, 60 (1964).
“KUH” will refer in the text to all four of these articles.
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considered a one-dimensional system with a pair

potential v(r) = g(r) + w(r, v),
o) = { ©, 1<}
0, r> 9,

(@/2ve ™, a«a<0. (1.1)

Kac’ first showed that as long as v is finite, there is
no phase transition (this is true in general in one
dimension for potentials which fall off reasonably fast
with distance). However, in the limit v — 0, KUH’
found the pressure p as a function of density p and
temperature 87" to be given by the van der Waals
equation of state combined with Maxwell’s equal
area construction,

P87 /(1 — pd) + 3ap’

plus Mazwell’s rule.

wr,v) = yelyr) =

li_r.f)l p(P) 'Y) =
(1.2)

Unfortunately, their actual method of solution de-~
pends very much on the exact form of the potential
and on it being one dimensional. The main new
feature of their potential is the strict separation of
v(r) into a short-range part and a truly long-range
part in the limit ¥ — 0. It should be emphasized
that the limit v — 0 is taken after the size of the
system has been made infinite.

The work of Kac, Uhlenbeck, and Hemmer has
been extended recently by Lebowitz and Penrose®
to higher dimensions and to more general interpar-
ticle potentials of the form v(r) = q(r) + ¥ e(yr),
where » is the dimensionality of the space. In this
work, which is also related to recent work by van
Kampen,’® it is proven rigorously for a wide class
of ¢’s and ¢’s that in the “van der Waals limit”,
v — 0, the equation of state assumes the form

Lim p(p, v) = p°(p) + 3ap’
-
plus Mazwell’s rule,

where p°(p) is the pressure in the reference system,
w(r) = 0, and a= [ ¢(y)dy.

In actual physical systems the potential does not,
of course, have infinite range in the above sense.
The separation of the potential should still be use-
ful though whenever many particles can fit in within
the range of one particle’s attractive potential. This
was, in fact, the central idea behind the earlier
work of Brout for lattice systems which was further

8 J. L. Lebowitz and O. Penrose, A Rigorous Treatment
of the van der Waals—Maxwell Theory of the Liquid-Vapour
Transmon (to be publigshed in J. Math. Phys

¢ N. van Kampen, Phys. Rev. 135, 362 (1964)
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developed and generalized by Horwitz and Callen,
Englert, and Coopersmith and Brout.*

Following the work of KUH, Lebowitz and Percus'"
investigated the asymptotic form of the radial dis-
tribution function in a fiuid with particular reference
to systems whose interparticle potential has a weak
long-range part. Their results, though not rigorous,
applied to more general systems (e.g., plasmas) and
agreed with the results of KUH.

It is the purpose of our work to exploit further
the idea of separating the potential into a short-
range and a long-range part. To this end we develop
general systematic methods for expanding the cor-
relation functions (and through them the thermo-
dynamic functions) about their values in a reference
system whose particles interact only via the short-
range part of the potential. Our method utilizes the
language of graphs' and is related closely to the
work of Hemmer.'"” When applied to the lattice
systems it also turns out to be related closely to
the work of Horwitz and Callen, Englert," and
Stillinger,'* although we have used the usual Mayer
cluster expansions as a starting point, rather than
introduce separate formalisms as those authors did.
We believe our method clarifies the relations be-
tween the expansions they developed and the cluster
series commonly used to treat continuum fluids. Our
work also makes contact with several other recent
treatments of systems with long-range forces'* and
we shall discuss these in the appropriate place.

In Sec. II, we develop a general graphical form-
alism for a system whose interparticle potential is
separated, essentially arbitrarily, into a sum of two
terms, v(r) = ¢(r) + w(r). This analysis is entirely
formal and its usefulness only becomes apparent in
Sec. III where w is specified to have the form v’ o(yr).
The ordering of graphs introduced in Sec. II is then
given meaning in terms of an ordering in the param-

10 J, Mayer, J. Chem. Phys. 18, 1426 (1950); R. Brout,
Phys. Rev. 115, 824 (1959); 118, 1009 (1960); G. Horwitz
and H. B. Callen, sbid. 124, 1757 (1961); F. Englert, 1bid.
129, 567, (1963); M. Coopersmith and R. Brout, <bid. 130,
2539 (1963).

11 J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4,
248 (1963).

12 An ordering of graphs suitable for long-range potentials
was used in a somewhat ad hoc fashion in the work of Ref. 10.
Its use as a tool in a strict y-expansion appears to have been
first used in Ref. 11. (cf. footnote 11 and 14 in that reference).

13 P, C. Hemmer, J. Math. Phys. 5, 75 (1964).

U . H. Stillinger, Phys. Rev. 135, A1646 (1964); A. J. F.
Siegert, Statistical Physics 3, Brandeis Summer Institute 1962
(W. A. Benjamin, Inc., New York, 1963); A. J. F. Siegert,
“On the Ising Model with Long-Range Interaction,” North-
western University preprint, 1962; B. Muhlschlegel and
H. Zittartz, Z. Physik 175, 553 (1963); G. A. Baker, Jr.,
Phys. Rev. 126, 2072 (1962); E. Helfand, J. Math. Phys. 5,
127 (1964); J. Percus and G. Yevick, Phys. Rev. 136, B290
(1964); C. Bloch and J. Langer, J. Math. Phys. 6, 554 (1965).
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eter v. An expansion of the two body Ursell func-
tion, the direct correlation function, and of the ther-
modynamic functions in powers of v is carried out
in Secs. IV, V, and VI. In Sec. V, is also introduced a
new auxillary function W which is more convenient
for some purposes than the direct correlation func-
tion. In Sec. VII we discuss briefly some of the uses
of our general formalism for lattice gases as well as
the limitation of the y-expansion to regions of density
and temperature in which the system is in a single
phase. In the Appendices we prove a lemma that
we use in obtaining our graphical formalism, and
carry its development further.

II. GENERAL FORMALISM

We consider a system of particles interacting via
a pair potential »(r) having the form

o(r) = q(r) + w(r). 2.1)

The functions v(r) and ¢(r) are assumed to satisfy
the conditions necessary for the existence of a stable
thermodynamic system,'® but are otherwise arbi-
trary. The particles may also be subject to an
external one-body potential u(r). The system is rep-
resented by a grand canonical ensemble with a tem-
perature T = (k8)™' and fugacity =.

The I-particle distribution function n,(r,, --- , 1)
is defined as the probability density for finding ! dis-
tinct particles at positions r;, --- , r;. We define
similarly® #,(r,, --- , ;) as the probability density
for finding [ particles, not necessarily distinct, at
positions ry, - - , r;. Thus,

M (r) = n, (o),
fa(ty, To) = no(ry, 1) + M@)o, — 1), -+ . (2.2)

The l-particle Ursell functions F,(r, ,--- , r;) are
defined'® in terms of the n,, s = 1, --- , [ in such a
way that they vanish whenever their arguments de-
compose into two or more independent sets

F\(r) = ny(r),
Fy(r;, 15) = na(ry, 1) — ny(x)n(rs). 2.3)

We define F,(r,, - -+ , 1) to be the same functions
of #; as F, is of the n;, i.e.,

15 D, Ruelle, Helv. Phys. Acta. 36, (1963). M. Fisher,
“The Free Energy of a Macroscopic System,” Arch. Ratl.
Mech. and Analysis 17, 377 (1964). These conditions on the
potential also guarantee the convergence of the fugacity and
virial expansions in a finite domain, cf. Ref. 3. This gives some
meaning to our graphical manipulations.

18 J, L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 1495
(1963). The definitions on the various correlation functions
used here as well as their representation as variational
derivatives of the grand partition funection is given in Sec. II
of this reference.
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F (1) = Ay(ry),
F 2(ty, T2) = 7y(1y, 15) — 7Ay(r,)Au(r2)
= Fy(ry, 1s) + nu(r)d(r, — r2).

The representation of the n’s and F’s by means
of graphs with Mayer f-bonds and either fugacity
vertices 2,(r) = z exp [—Bu(r)] or density vertices
n,(r) is well known.'”"** For the purposes of our
analysis we shall break up each f-bond into “short-
range” K-bonds and “long-range” $-bonds,

flri) = ™0 —1

EPER)

=0

2.4)

+ L) @)

mel

where
K@) = ¢ %™ — 1, &F) = —puw@).

Pictorially the K-bonds will be represented by dotted
lines and the ®-bonds by solid lines. Our graphs will
then consist of points or vertices representing the
functions z,(r) or n,(r) and K- and #-bonds. Between
any pair of vertices there can be zero or one K-bond
and any number (including zero) of ®-bonds.’* We
shall call these graphs composite graphs. In con-
formity with the usual graphical notation, vertices
colored black represent unlabeled field points over
which integrations are performed while white vertices
represent labeled points (root points). Each graph is
associated with its corresponding integral (over the
field points) divided by o [] (:;!), where ¢ is the
symmetry of the graph, ¢,; is the number of #-bonds
between the points 7 and j. The product of i;;’s
is taken over all pairs of vertices. As an illustration,
we have, for example

X &, — D@ [BE — r)’w, () dx,  (2.6)

where w,(r) stands for either z,(r) or n,(r).
In terms of the usual graph language we then
have'*'"

Fi(r,, -+, r;) = the sum of all composite
irreducible (or connected) graphs with

17 G. Stell in The Equilibrium Theory of Classical Fluids,
edited by H. L. Frisch and J. L. Lebowitz, (W. A. Benjamin
Company, Inc., 1964).

18, E. Uhlenbeck and G. W. Ford in Studies in Statistical
Mechanics edited by J. de Boer and G. E. Uhlenbeck, (North-
Holland Publishing Company, Inc., Amsterdam, 1962).
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n,(X)-vertices [or z,(X)-vertices] having
white vertices labeled by 1, 2, <. , [,
respectively. 2.7

By irreducible we mean both connected and free
of articulation vertices, i.e., vertices whose removal
would separate the graph into two or more parts,
one of which is free of white vertices. The delta-
functions that arise in the relationship between the
F, and the F, can be represented by letting any
subset of k& white vertices coalesce to form a single
white vertex labeled with k& numbers. Such a vertex
represents the function w, times the product of delta
functions in the differences of the k arguments, e.g.,

O;
123

O = wy(r)é(r, — 13)
4

X 5(1'1 - l‘3)<I>(1'14)‘w1(r4).
We thus have, when I > 2,

Py(r,, --+ , ;) = the sum of all composite
irreducible (or connected) graphs with
n,(x)-vertices (or z,(x)-vertices) having
m < I white vertices, each labeled by a sub-
set of the set of numbers {1, ---, I}. The
subsets are disjoint and exhaust the set
{1, -++, 1}. When [ = 1 this characteriza-
tion is still true for the connected graphs
with z,(x)-vertices.

2.8)

2.9)

The characterization given in (2.7) lends itself
immediately to an expansion of the F’s in powers of
the density or powers of the fugacity. This is how-
ever not what we are interested in. We desire (for
reasons indicated in the introduction and elucidated
later) a representation of the F’s, and F’s, in terms
of graphs which contain only ®-bonds. In order to
accomplish this we shall consider graphs consisting
of ®-bonds and hypervertices. A hypervertex, which
represents a function w,(ry, - - - , y), can be pictured
as a large circle, along the circumference of which
are attached % vertices (or points). We shall call &
the order of the hypervertex. The small vertices
can be either black or white and correspond, re-
spectively, to field points over which integrations
are performed and to labeled points (root points),

e.g., |CCI . Each field point has one and only

one ®-bond coming out of it going to another vertex.
A graph is associated with its corresponding inte-
gral (over the field points) divided by o J] ;)
defined previously, (treating each hypervertex as a
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point for the purpose of counting). As an illustration
1
= W Wy(T1, Xo, X5)P(Xa, x4)'I’(x3; Xy)

X ws(Xs, X5, Xo, X7, Xg)P(Xs, Xo)B(X7, Xy0)
(2.10)

The usual graph theory, with its point vertices,
may be recovered from our formalism by setting
WLy, *+ L) =y (1) (1, ~ 1) (1, ~13) -« - - 5£rx_fk)-

We shall now divide each of the F,’s and F,’s into
two parts F; and F%. This division is defined in
terms of their graphical representation given in (2.7),
ie., Fi(r;, -+, 1;), (F, short range), is the subset of
all composite graphs in F,(t,, --- , 1;) in which
there is a path, consisting of K-bonds alone, connecting

X (X5, X;1)W4(Xo, X190, Xu1, I) dX.

the labeled points 1y, - -- , r;. Then
Fl(rn te ;rl) = F;(rly tee )rl)
+ Fi(t, «++ , 1. (2.11)

The second term in (2.11) will be called the long-
range part of F,. A similar definition applies to 7,

F,=F +F (2.12)

with labeled points replaced by distinct labeled points
in the above characterization, i.e., the graph ,% =
8(r, — r;) belongs to F; clearly

Fir) = Fi(r) = m(0). (2.13)

The definition of F} and F% is clearly independent
of whether composite graphs with n,(x) or z;(x)
vertices are used.

The F} may themselves be divided into a subset
F containing those graphs with z; (x)-vertices in which
there is a path consisting of K-bonds alone, connecting
all the vertices and a remainder F!’. Thus,

F;(rb ce 1rl) = Fz’(ru te ,I';)
+ F'(ty, +++ ,1;) 2.14)

and similarly for the F:. Finally F{ will contain a
subset of graphs F{° in which there are no $-bonds.
This F{°, is just the value of F, considered as a
functional of z,(x) and ¢ when ¢ = 0.

A little thought (see Appendix A for details) now
shows that a resummation of the graphs in (2.9)
yields the following prescription for the F,,

Fi(xy, -+, 1) = the sum of all irreducible
(connected) graphs with &-bonds and
Fi(x,, - -,x,)-hypervertices (F{(xy,- - -,Xs)-
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hypervertices), having ! white vertices

labeled by 1, 2, .- - I, respectively. (2.15)

In considering the connectedness or irreducibility
of a graph each hypervertex is to be thought of as
a single point. The simplest graph in (2.15) consists
of a single hyper-vertex. In the case where ¢(r)
vanishes, K(r) = 0, then both the F; and F} vanish
forl > 1, and

F;(xl’ MY xl)
= m(X)d(x, — x,) -+ §® — x), (2.16)
F’,’(xl, teey, Xz)

= 2,(x,)8(x; — X;) -+ &(x, — X;),

and (2.15) reduces to the usual expansion in $-bonds
and density (fugacity) vertices for systems with in-
terparticle potential w(r). Equation (2.15) may thus
be considered a generalization of these expansions
to the case where there is an extra term ¢(r) in the
interparticle potential, i.e., the reference system is
no longer one in which the potential is zero but one
in which the potential is g¢.

The relation (2.15) expressing % in terms of graphs
with ®-bonds and F; hypervertices may be sup-
plemented by an explicit formal expression for F:.
To accomplish this we introduce the notion of the
very long-range part of F,, F}*; where

Fi¥(r, -+, 1) = the subset of F7 con-
sisting of all these graphs in which there
is no path consisting of K-bonds alone
connecting any pair of labeled points
Iy, -, I

We then have

P, - 1) = m{exp [kz (/KD f dx, - dz,
1T e |}

t=1

2.17)

X Fi(xy, -+ x)8"

X F(l)(rly Tt rl;[nl(x)]): (2°18)

where §/6n,(y) means, as usual, the variational
derivative with respect to n,(y) and F? is the value
of F; considered as a functional of the density #,(x)
and & when & = 0. The script 9 indicates a normal
order in which all variational derivatives go to the
right before evaluation. Equation (2.18) can be most
easily obtained by noting the relationship between
functional differentiation and a graphical operation®’,
since graphically it is a simple identity.

In the case of the ordinary cluster series it was
found profitable by a number of workers'’ to..con-
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sider a resummation of the n, (x)-vertex f(x;, X,)-bond
graphical expansions which yields n,(x)-vertex and
[Fa(x,, %2)/n:(x)ni(x;)]-bond expansions. This re-
summation yields expansions in terms of graphs that
are characterized by the absence of articulation pairs
of points as well as articulation points. (An articula-
tion pair is a pair of vertices whose removal will
disconnect the graph into two or more pieces such
that one of the pieces contains at least one unlabeled
vertex but no labeled vertices.) It is natural to ask
if there is any analogous resummation that we can
perform on our graphs with F*-hypervertices and
&-bonds and if such a resummation has any use. The
answer to the first question is yes; we shall indicate
in a later article why the answer to the second
question may also be yes. The new graphs we shall
consider will have L-bonds where

L(r;, 1) = ®(r1)

+ [ dey de, 20 Putes, 120, (219)
If we use L-bonds instead of ®-bonds, then instead
of (2.15), we find, when I > 2

P i(ry, -+ -, 1;) = the sum of all irreducible
graphs with L-bonds and Fi(x,, -+- , %:)-
hypervertices such that ! white vertices
are labeled by 1, 2, --- , I, respectively,
and the graphs are free of articulation
pairs of vertices. (Note that this last re-
quirement is quite different from the re-
striction that the graphs be free of ar-
ticulation pairs of hyper-vertices.) (2.20)

Equation (2.20) is obtained from (2.15) on the basis
of exactly the same reasoning that yields the n,(x)-
vertex, (F./nn,)-bond expansion for F;, I = 3,
from its n,-vertex, f-bond expansion.'’

III. SHORT- AND LONG-RANGE FORCES

In the last section the division of the potential
into two parts ¢ and w was entirely arbitrary. We
now specialize to the case where ¢ and w are truly
ghort range and long range. For this purpose we
follow Kac’ and introduce a parameter v into w such
that v~ measures the range of w,

wir,y) = 'Yaﬂo(‘YT)- @.1)

[More generally ¥"¢(yr), where » is the dimensionality -

of the space.] The functions g and ¢ are assumed to
have the property that a system of particles inter-
acting via g pair potential g(r) or »(r) has a stable
thermodynamic limit'® for any ¥ > 0. [This requires,
in particular,'® that there exists some 8, such that
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lg(r)] < D/e*** for r > 8.] We shall require in addi-
tion that

@ [vond=[oddr=a<= G2
®) |¢t)| < Ae™ for r> 5; 4,2 20, (3.3)
(e) ¢(y) is piecewise analytic and bounded
for all y > 0. We have in mind here a
¢(y) of the type
o) = (/8me™ or o@y) = alr) e, (3.4

Condition (a) is essential for the existence of the
van der Waals limit® ¥ — 0. Conditions (b) and (c)
are only necessary for the existence (formally at
least) of a power-series expansion in v, [ef. Egs. (3.6)
and (3.7)], which we now discuss. The reason for
introducing the parameter ¥ is to be able to consider
the case in which ¥ € 87" i.e. o(yr) is very long
range. Our interest now is to obtain an expansion
in ascending orders of v for thermodynamic quantities
and distribution functions of the system, and in par-
ticular for the two-particle Ursell function F,(r,, 13)
or Fy(r,, 1,).

In order to carry out this expansion we shall first
go to the thermodynamic limit, i.e., let the size of
the system become infinite. Assuming for simplicity
the absence of any external potential, u(r) = 0,
the one-particle density is constant, n,(r) = p, and
Fi(r,, 1) = F,(ry;) where r,, = |1, — r,|. Now in
order for an expansion of F,(r, v), in powers of v,
to be useful it must have the property that trunca-
tion of the expansion after a finite number of terms
yield reasonable approximations for those properties
of the system which are of physical interest, e.g.,
x-ray scattering cross sections, equation of state,
ete. For this to be the case it is essential that each
term in the expansion approach zero as r — o,
as does F,{r) itself. On the other hand, consider
the value of F,(r, v) at very low densities p’( exp.
{-8lg(*) + Y’o(y7)]} — 1). On expansion in y this
would give terms proportional to . What is clearly
necessary is to treat the short- and long-range parts
of Fy(r), F; and F%, on a different footing. We thus
write

Fiir,v) = Fir,v) + F3w,v), y=»rr (3.5)

and expand them separately as functions of r and
y, in powers of v. :

In order to illustrate the difference in treatment
of F; and F% we consider two graphs of (2.7) with
p-vertices, the first belonging to F3(ry,;, ¥) and the
second to F5(y.,, v). Thus, after some change of
variables,
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/ \ = PéﬁggK(?'m)’Ys f f oz, + e + ’)’xz)K(xz) dx; dx,
L 2

== 73/32P4K("'12){ f f K(x)lo(x))* dx, dx; + v f f K®@)ox)[re + x]- Ve(x,) dx, dx, + O(‘Yz)}, (3.6)

while

/ \ = v°8%* f f (V12 + XK X)o(x;, + ¥X2) dx, dx,
H 2

= 73[3204{]‘ dx, K(x,) f‘P(Ytz 4+ xl)[¢(x1) + ¥x,- Vo(xy)] dx, + 0(’)’2)}- 3.7

In either case the graph is of O(y®), but in one case
the coefficient of v* is a function of ry,, and in the
other case it is a function of y,; = ¥r:. To obtain
the general order of a graph appearing in (2.7) or
(2.9) we note first that the integrand of a graph
containing ¢ &-bonds in O(y*‘). On the other hand,
each “free integration”, i.e., one not tied down by
a K-bond,"® brings in a factor v°. The number of
free integrations m is obtained by erasing all the
&-bonds and counting the number of remaining dis-
joint components in the K-graph not containing
any root point. The graph is then O[(y*)'™™].

This suggests ordering the composite graphs, with
density vertices appearing in F,, according to the value
oft —m.For F{m = 0,1, --- , and t > m, while
for Fim = 0,1, --- ,and { > m + 1. Thus

Py =P+ Fiy+ -,
ptl' = f{u‘l‘pﬁzl e,

(3.8)

F 2(ri2) =

e ——a(C T

where for each k, F,y; is the sum of all graphs for
which { — m = k in the expansion of F,, (short or
long range). An analysis similar to that given in
(3.6) and (3.7) shows that ¥, (., can be expanded
in a power series in v, starting with v°",

Pimir) = E 'Yipllml:'-

i=3m

3.9)

In particular F},, is the value of #; considered as
s functional of p and ¢ when ¢ = 0. We shall eall
this ordering of the graphs in (2.7) y-ordering.

A related, and sometimes useful’, ordering which
also has the property that each successive term
starts with a higher power of ¥ may be applied to
the graphs appearing in (2.15). These are ordered
according to the difference between the number of
$-bonds and the number of hypervertices containing
no labeled vertices in the graph. Thus,

LG (OO-—---*OO) - (*OCC'::::I%

O © s @S2t @1 ININR

= Tolriz, ¥) + TilWiar 75 {F3) + Tolyusr v (B2 JED) + -+,

(3.10)

where the dot-dash line, a ©-bond, introduced here for convenience, is the sum of all chains,
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P C(Yrg, y) = | 002 = 1 0——02+ |0——eOp——02+ 10——eOp——ep——02+ ..
= p2|:<1>(y,2) -+ ff B(yra) Piy(ras, Y ®(yry) dr; drg + - - .], (3.11)

and is evaluated explicitly in the next section [¢f. Eq. (4.3)]. In (3.10),

P” — 0(731;) — Z'Ya"+irn,j,
i=0

P0=p;;

(3.12)

(3.13)

and we indicated explicitly the functional dependence of T, on £, for ! < n + 1. We shall call this ordering
of the graphs I'-ordering. In this ordering we similarly have

Fa(rl, I3, 13) =

2

+ib._.__.,(),> . e

We note here that the graphical expansion of P,
in terms of graphs with @-bonds is characterized in
the same way as its expansion in terms of graphs
with ®&-bonds [Eq. (2.15)] with the added restriction
that no graphs contain a hypervertex with two black
vertices and no white vertices.

IV. EXPANSION OF F. IN POWERS OF vy

In this section we shall obtain explicit expressions
for the first few terms in the expansion of F, in
powers of v. These will be similar to those obtained
by Hemmer'® although Hemmer did not make an
explicit separation between the short-range and long-
range part of the correlations which appears to us
essential for clarity. Since the series expansion of
Fi(ris, v) and F5(yry,, v) is unique it does not matter
when retaining terms up to a certain power in 7,
say v°, whether one uses the first two terms in the
4- or T'-ordering, as these will only differ in terms
of higher order in y. We shall use both orderings
interchangeably.

For clarity of notation we shall now replace F,
by ¥ (and make similar replacements for all its super-
scripted and subscripted versions). The series expan-
sion of & will then have the form, [cf. (3.8), (3.9)]

§‘,(7'12, 'Y) =TI, = §0(7'12)
+ ¥’ Falrn) + ¥ + -, @D

where $o(r12) is the value of F, when ¢ = 0, which
differs from Fo(r\,) by the terms pd(ri;). There are

lD"’ . ( ;g:)._._._.oos *32)""—"*002

ete. 3.149)

no O(y) or O(y*) terms in (4.1) for the type of ¢
considered here, i.e., satisfying (3.3) and (3.4), [cf.
Eq. (6.6)]. The series expansion of §“(y., v) =
F"(y12, 7v) coincides with that of I'; up to O(°),
[cf. (3.12)],

gL(ylz: v = Za 'Yigl;(ylz)

= Dt v) + 0(’)’6)-
Utilizing (3.10) and (3.11) we readily find

4.2)

L, = @7 [ Ttk Ve, v) di

_ oy [ sy Y [Tolrk, MI*EE)
= G [ P

where

Tk, n) = [ T, dr, (@)
30 =77 [ a0 ay
= —8 [ dy, @)

and :

X =L = [s0d = 1o @8
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p°(p, B) being the pressure and Bx°/p° the iso-
thermal compressibility in the absence of ¢. [p°
differs from p,(p, 8) which is the van der Waals
pressure obtained when v is set equal to zero after
the thermodynamic limit has been taken, cf. Eq.
6.2)]. R

Considering now the next order term in §' we
note that up to O(y°) it coincides with %{,, which
is given according to (2.18) by

- 1
Pty ) = 5 f Fia (Y12, 7)

8o(ry, Ta; {n,(x)}
on,(x,)on,(x,)
since for the two-particle Ursell function “ = §°*.
Equation (4.7) may be represented graphically in

the form

X dx, dx,

Bi™p

@.7

7T T e —e T N
/ \ []
i } 1
\ / \
. S "‘sQ\ "/
Fu = ’,” \
! |
\ i

O
1

\
\
!

/

4.8)

2
with

-—

N
) d\ P =50, r, n&).

\\__//

Expanding (4.7) in powers of ¥ we find
Fin = W'9:0m2)8%0(r2) /36" 4+ O(*)
= I7'55(0)0°(r12)/05° + O("), 4.9)

where use was made in the last equality of the rela-
tion [cf. Eq. (2.4)] 8°5./3p° = 8°5,/8p". The reason
for writing out the intermediate equality in (4.9)
is that it permits the combining of F3(r;,) with
Falyri) to give

LEBOWITZ, STELL, AND BAER

§@r) = 5@
+ 10/ )50 + 0G'),  (4.10)

where n3(r) is the value of 7. in the reference system.
By combining (4.3) with (4.9) and carrying out
explicitly the functional differentiation there we
can obtain § up to O(y®) in terms of the properties
of the reference system, i.e., one for which ¢ = 0.
Continuing in this manner it is easy to express “
through O(y') in terms of functions of the reference
system. To go beyond this we need to utilize the
higher-order terms in (2.18) and the analysis soon
gets very complicated.

V. EXPANSION OF THE DIRECT CORRELATION

FUNCTION AND A RELATED AUXILIARY
FUNCTION

It is convenient for many purposes to introduce

. the direct correlation function C(r,,) of Ornstein

and Zernike'®, defined by the relation

56 = p'CE) + o [ COFa) drr. (5.1)
The graphical representation of p’C(ry,), in terms of
composite graphs with p vertices, is similar to that"’
of F(r;,) given in (2.7), with the added restriction
that no vertex be a cutting or nodal vertex whose
removal separates the graph into two or more parts
with each of the two white vertices in different parts.

We now divide C(ry,) like &, into a short-range
and long-range part, (according to whether or not
there is a path consisting of short range K-bonds
alone connecting the points r, and r,), and write the
long-range part as a function of y = 7,

Clr) = C'(r1asv) + CL(ym: 7). (5.2)

The relationship between C’, C*, and §° is most
readily obtained from the graphical interpretation
of Eq. (5.1) as representing & by the sum of all
distinct repeated convolutions involving C* and C*

PP hrvimnmarniieeY /‘_'_—-~\ f’-‘_——-\
Fru) = 0 + &£ =0 + 0= = = —D0-
| 2 | 2 | == T e
— e >p +
+ 0 .o
S~ ’ (5.3)

where

represents C°, %

19 1, 8. Ornstein and F, Zernike, Proc. Acad. Sci. Amster-
dam, 17, 793 (1914).
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?epres_ents C*, and vertices represent p. It is now clear that since $'(r,;) consists of those graphs in &
in which there is a short-range path from r;, an r, it must be represented by all the convolutions of C*

with itself.
F(rn) = = 0 + S S =0 + (5.4)
I —— 2 paie———— — 2
or
F'(ro) = 920'(7'12) + f C'(T;g)ff'(?”m) dr;. (5~5)

I.n a similar manner 5* will consist of the sum of all graphs containing C* bonds separated by either a
single p vertex or by all possible”convolutions of C* with itself, i.e., the C* bonds will be separated by

the hypervertex T,

Tolryn) = ' (rn) = () + pdt, — 1) = ! O) 2,

Thus,

(5.6)

) = O+ OO0 +
—— T~
t 2 ! 2

= fﬁ‘(rlB)CL(y:;{)@a(r42) dra dl'4 + fg'(rlg)CL(y34)§L(y42) dra dl'4.

Equations (5.5) and (5.7) may be thought of as the
generalization of (5.1) from a system whose par-
ticles interact only with the potential w to a system
with interactions ¢ 4+ w. Of course when ¢ = 0,
C’ and F* vanish, Ty(r;,) becomes equal to pd(r, — 1,),
and (5,7) becomes the usual equation for C.

An inspection of the graphs in (5.5) and (5.1)
enables us now to obtain simple relations between
terms in the y-ordering of ¥ [¢f. Eq. (3.9)], and a
similar ordering of C, i.e., C|,, is the sum of all those
composite graphs appearing in C in which the number

of ®-bonds less the number of free integration is m.
Thus,

Flmi (7'12) = PZC:ml (7'12)

+0 2 f Ciai5)F i) drts (5.8)

and

35{1»1(2/12) = E

€+i+tk=m

++7° _ Z §10 ) CTi Yan)F 11 (Yaa) drs dYs,
s+i+k=m+1
(5.9)

f F10 ) Cln(Wa)F (1 (re) drs dry

5.7

§ k&, v) = C*(k, )[p + &0k, VI'{L — [o + &' @k, VIC K, M}
= (p + 50)2[1 + (o + &) E 5:,.1]

X [1 - (P + ET“‘J)(.j'lLll]_l{l - [1 - (P + go)é(l‘u]“1 k+2>1 gﬂklaﬁnu —‘,

where it should be remembered that in carrying
out the convolution of C* and F* there is introduced
an extra free integration. Introducing the Fourier
transforms ¢ and § we find from (5.5) and (5.8),
1 — pC*(k, v)

=1+ p7F®k N7 =1+ o Fo®)]™

x [+ 1o+ 5@ T8, 2 60

which gives, upon equating terms of the same order
1 — pCuk) = [1 + p7F®]™,  (5.11)
Cio(k, ) = [p + Fo®] Flu(k, v), -+ ete.,, (5.12)

with §¢,, given by (4.8).

In analyzing the long-range parts of C and § we
must remember, cf. Eq. (4.5), that in any function
of y = «r, Fourier transformation brings down a
factor v°, i.e.,

CHk,v) = 7° f e " C (yy) dy

and similarly for all other functions of y. We then
find

(5.13)

Z CY{:")

n=1

(5.14)
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where the argument of the short-range functions is

vk and
L 'Ya ikyaL
b 1K
Fly,v) = (211_)3_[6 F (&, v) dk. (5.15)
Expanding (5.14) yields
gﬁ] = (P + go)z ~1Lu[1 - (P + 50)6{411]_1»

:-‘—;'f‘zl = [(P + §0)2éle + v"ﬁtul
X [1 — (p + )0l — Y*§1, ete.

(5.16)

(5.17)

where

i

, qﬂ]ﬂn

i

p’K3(ry, I, Ts) is the sum of all diagrams, with »
vertices and K-bonds, having three distinet labeled
vertices and no vertices, black or white, whose re-
moval would separate the graph into two or more
parts. K, is the “natural” generalization of the direct
correlation function C, the superseript zero indica-
ting as usual that it is to be evaluated in the reference
system ¢ = 0. The second equality follows from the
definition of the direct correlation funection as a
variational derivative,

Clr, 1o; (m(®)})

= & In [ni(r)/z:(r;, {m @ D]/ dnilra), (5.21)

with z,(r;) = 2¢™™Y (4 the external potential)
considered as a functional of the nonuniform density
n,(x) ,while 2} is again this functional in the absence
of ¢. Substituting (5.20) into (5.19) and carrying
through an analysis similar to that done in Eq. (4.8)
we find that the lowest-order term in C%,;, %y, ¢ i5
given by

= £ A f dX1 dX2 dX3 dX4 Kg(]..l, X;, XQ)gfu('YI X; — X3 !)5?1]7(l X — Xy D Kg(X3, X4 1‘2), (5'19)

The only graph contributing to Cf;, is one consisting
of a single $-bond,

Cinly, ) = ®@.7) = —Bv'0), (5.18)

so that to this order C” is equal to —pB times the
Jong-range potential.** Combining (5.18) with (5.16)
yields, of course, the same result (except for a factor
p”) as the first integrand in (4.3) when Ty there is
replaced by ;.

The evaluation of Ch,; is also straightforward.
Graphically,

Pglzg(ru Ty, T3) = Ps[Kg(ru Ts, 12) + P~25(r1 — 1) 8@ — 1 8]

p°0/8m (@) [Colt:, 25 {M(®)}) — nT'E) 8@ — 1)) =s
= —p8" In 21(ts, {n(x)})/ 8m1(t2) 811 (X5) |y (> =

(5.20)

sz].s(ym) = %{5:15(%2)}2 ,
X [ f f 8% In 20(r.)/ 61.(X1) 14 (Xs) s =p A%y, dxg]

= 3FW)V10°Bu’/30°T, (5.22)

where 1%(p, 8) is the value of the chemical potential
in the reference system, pdu’/dp = 8p°/dp. By sub-
stituting (5.22) into (5.17) and utilizing previously
obtained results we may obtain an explicit expres-
sion for Ty 6

Note added in proof: In terms of the I-ordering
given at the end of Sec. ITI we have simply"

F(k, v) = Tuk, ) + o, v) + 069
and
re, ) = 5 (Z24) 0 - #5001® + 00

where 7'(k) is the Fourier transform of €*(y).
Equation (5.22) is of some interest for its own
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sake since in terms of our ordering it makes more
precise the popular notion that C(r) — ®(r) should
be short ranged compared to §(r). To second order
in the y-ordering, C(r) — ®(r) has “one-half”’ the
range of F(r) when the coefficient (6°8u°/9p") is not
zero. However, the coefficient will be zero for some
important special cases—for example, for a field-
free Ising model (or lattice gas at p = %)—and
in such cases C — & vanishes to second order in
the v ordering.

The function C(r) is introduced in considering
fluids as a convenient auxiliary function. The fact
that C(r) itself cannot be characterized as a sum
of graphs with F:-hypervertices and ®-bonds robs
it of some of its convenience for our purposes. For
this reason we introduce another auxiliary func-
tion by subtracting ®(r) from C(r) and repeatedly
convoluting the result with itself. The sum of C(r) —
&(r) and all such convolutions we shall denote by
W(r).

W) = Clriz) — ®(ri2) + f drs[C(rys)

= B(r1)]p[Clrsz) — B@a)] + -+, (5.23)

or in terms of Fourier transforms with respect to r
(rather than vr)

W) = [Ck) — $®I/{1 — olCH) — S®]}. (5.24)

Alternatively, we could define W (k) directly in terms
of §(k):

W[ + 3+ pm)]]
§k) = ”[ L — s8R + )]

pll + o WE)]
1 — p®(R)[1 + pW (k)]

It is easy to verify that separating W in the usual
way into short- and long-range parts we have W =
W* + W* where W'(r, v)p> = F°(r, v)

p’W¥ (Y12, ¥) = the sum of all irreducible
graphs with &-bonds and F-hypervertices
such that each graph contains two white
vertices labeled by 1 and 2, respectively,
and there are no culling bonds, i.e., bonds
whose removal separates the graph into
two parts, each of which contains a white
vertex.

= —p+ (5.25)

(5.26)

In terms of L-bonds rather than &-bonds, we
have the same representation, except that we must
add the restriction that the graphs contain no ar-
ticulation pairs of vertices. The resulting series is a
natural generalization of an expansion that Stil-
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linger™ has introduced to treat lattice systems and
reduces to his expansion for such systems.

VI. EXPANSION OF THERMODYNAMIC
FUNCTIONS

In order to obtain the thermodynamic functions
as an expansion in powers of v it is possible either
to start directly with a graphical representation'® of
the Helmholtz free energy (or some related function,
cf. App. C) or to use one of the several methods
which connect thermodynamic properties with in-
tegrals over the two-body distribution functions
which we have already investigated. We shall begin
here by mentioning two commonly used relations
of the latter type: the virial theorem and the fluctua-
tion theorem. Both of these methods permit, utilizing
our previous results on &, calculation of the equa-
tions of state through O(y°), a result already ob-
tained by Hemmer.”> We shall then develop a new
method which will utilize our previous results to
yield the Helmholtz free energy (and the equation
of state) through O(y®), (or more generally through
O(y*™") where » is the dimensionality of the space.)

The virial theorem may be written in the fol-
lowing form:

p = pkT — §1r fo gD + s dr
+ 2mp’ fo e(y* dy
- %w fo o WF Wy’ dy

- 74§7r f SFOF dr,  (6.1)
0

where ¢’ and ¢’ are the derivatives of ¢(r) and ¢(y)
with respect to r and y and we have put the term
o> + F(r) = n,(r), together in the term containing
¢'(r) to enable us to use the proper limiting pro-
cedure in case ¢(r) has discontinuities (e.g., hard
core, square well). Equation (6.1) yields to zero
order in v, the “van der Waals” equation of state,’

p= {ka - gvr f g0 + 501 dr}

1
+10 [ dy + 069 = 2° + 1o
+ 0(r") = po + 0G). (6.2)
To obtain the O(") corrections to p, from (6.1) we
need to know both F; and F% to the same order.
Our previous calculations of §},, and F7;, thus enable

us, at least in principle, to obtain p through O(°)
from the properties of the reference system; to go to
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higher order we must use %3 which can be obtained
in principle from (2.18).

We next consider the fluctuation theorem [ef. Eq.
(4.8)]. This is best expressed in terms of the direct
correlation function and may be written in the form™

d . -
pE=1-p[Cema—v [y
=1 - pC*0,v) — pC*(0, 7). (6.3)
While (6.3) is simpler in structure than (6.1) it
requires knowledge of C* to order n + 3 to obtain

p to O(y"). To zeroth order we, of course, have again
as in (6.2)

d
5£=1~—pfco(r)dr

+ 6o [ o) dy = 8% + ga.

The next-order term in p may now be obtained from
(5.12), (4.9), and (5.22). Again we cannot go higher
than O(y®) with the available information on ¥ and C.
In order to make further progress we now utilize
the functional relation between the Helmholtz free
energy and the two particle distribution function n.,.
We have, for a uniform system,
na(r12) = 2084(p, {v})/80(r12), (6.5)
where A is the nonideal-gas part of Helmholtz free
energy per particle [the ideal-gas part making no
contribution to (6.5) anyway] considered as a func-
tional of the interparticle potential »(r) and the
density. Equation (6.5) is a special case of the more
general relation holding also for a nonuniform system,

fnz(rzzyrz) dr, = 28a({n,(®)}, {o})/ov(r:y) (6.6)

where @ is the Helmholtz free energy (non-ideal part)
of the whole system. Equation (6.6) may be derived
either from the graphical representation’” of @ or
more directly from the definition of —8@, for a
system with a fixed number of particles, as the
logarithm of the canonical partition function.

‘We may now rewrite (6.5) in the form

) = —2p Aol

since v = q ~ B7'®. “Inversion” of (6.7) then yields

(6.4)

6.7
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4= 4"+ tpa — 5= [ dr [ 5, 5, (2D202, 68)
where A°(8, p) is the free energy per particle (non-
ideal part) in the reference system ¢ = 0, and we
have indicated explicitly the functional dependence
of F on ®. In order to earry out the functional inte-
gration indicated in (6.8) we consider a process in
which & is “turned on’’ from zero to its final value*

via a parameter \. We write
3, N) = A([) = —M8v'e(yr). (6.9)
For A = 0, the system is in its reference state and

for N == 1 the system is in its final state. Equation
{(6.8) may now be written in the form

A° + dpo — «—-fdrf S, p, V() N

A+ fol ax {5 r f nar, Ny'o(yr) dr}. (6.10)

We note that in the case where ¢(r) is a simple hard-
core potential, ¢(r) = o, for r < 3, and vanishes
for r > 8, (including the case § = 0, or ¢ = 0), the
term in the bracket in the second equality in (6.10)
is just the average potential energy per particle
E while the parameter \ enters only in the combina-
tion A\3. Equation (6.10) becomes #n this case

-]
5 E(p, B) dB,

which is usual thermodynamic relations between 4
and E.

Returning now to the general case we may write
(6.10) in the form

A= Ao+ 307y [ dretm [ 50,7000

4

I

I

= A’ 4 g8 (6.11)

+17 [dye® [ 5@ v N ax 612)

where

Ao = A’ + %pa (6.13)
is the van der Waals form of the Helmholtz free
energy. We see now that our knowledge of 5 to
0(y*) and F* to O(y*) permits us to compute 4 to
to O(®). The caleulation to O(y®) is straightforward
and gives®

64 = pds — 15750 + o7 5 (Z) [ k1 11 — gi0m300)

X" Bk ~ kX" (k)

v s J11 (oxy
b7 /20)" || d"dk[ (ap) [ = 8@ — 3G — x"3(fk — K]

1 8%°
230" 1

X Bk B (k)

=X ERIT — x*‘é(k'n] + 06,

(6.14)

20 Hemmer’s (Ref. 13) expressmn for A through O(y%) does not contain the term —3§8v%(0). This term makes no contri-

bution to the pressure, cf. (6.16
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Equation (6.14) may be evaluated explicitly for
the one-dimensional system investigated by Kae,
Uhlenbeck, and Hemmer, ef. Eq. (1.1), to yield

BA = Inp/(1 — 8p) + Zpaf — 1y
- %‘Yp—l“ ~ [ + aBp(l — 80)°1}}

2 012329(1 - 59)4
Y 3601 + aBp(l — 30))

+ af(1 — 80)°(1 + 126p — 188°0)] + O(y"). (6.15)

The pressure, internal energy, specific heat and
other thermodynamic functions may be obtained
directly from (6.14). The specific heat per particle
is thus given (in units of Boltzmann’s constant) by

+ - Fl [95(2 - 35P)

872 X 3(k)
C=0C- (277) 2pf_a%%®—dk
+ (2 ) 2p [(1 iﬂ);)j(?:)))] dk + 0(x"""), (6.16)

where C, is the specific heat of the van der Waal’s
system which coincides with that of the reference
system, C°, in the uniform state. It should be noted
here though that as we approach the van der Waal’s
coexistence curve®, which coincides with [I —
x"$(0)] = 0, the coefficient of (y”) in C will become
infinite, with the nature of the singularity depending
on the number of dimensions ». Similar singularities
will occur in the expansion of all other thermo-
dynamic functions and will get worse for higher
terms in the expansion. This expansion therefore
breaks down completely near the critical point”*****:
the zero-order term however remaining exact®, (c.f.
Sec. VII).

VII. DISCUSSION

In Sec. II, and parts of Sec. V, of this paper we
have set up a general formalism, utilizing graphs,
for systems whose interparticle potential consists
of two parts v(r) = ¢(r) 4+ w(r). This formalism
uses a system with interparticle potential ¢(r) as a
reference system. We then obtained the first few
terms in a y-expansion of the two-particle correla-
tions, and of the free energy, for the case where w is
a Kac type long-range potential of the form v’ ¢(yr),
(v the dimensionality of the space). It thus serves
as a natural extension of Ref. 8 where only the limit
¥ — 0 is considered. In obtaining these few terms
in the y-expansion, the general formalism was, how-
ever, utilized only to a limited extent and is almost
unnecessary (cf. Hemmer, Ref. 13). The main prac-
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tical value of the general formalism lies (for us) in
lending itself readily to approximations that are
not simply the result of considering successively
higher powers of v. Thus in the case of a lattice gas
discussed in the next paper' we use the I-ordering
of the graphs and evaluate the hypervertices by
requiring that the various Ursell functions obtained
successively in this ordering, satisfy certain condi-
tions. The results, even in the lowest order, are an
improvement over the mean-field and spherical-model
approximations. Also investigation of the behavior
of fluids and lattice gases with long (but not infinite)
range forces near the critical point appears to be
facilitated by approximations for ¢ and W sug-
gested by our TI'-ordering. To make the connection
between our expansions and the lattice-system ex-
pansions of Brout, Horwitz and Callen, Englert,
and Stillinger, we can let ¢(r) express that impos-
sibility of multiple particle-occupancy of sites and
w(r) describe the rest of the interparticle interaction.
(For convenience, we use lattice-gas language here
rather than spin-system language.) Thus ¢(r;;) = «
when r;; = 0, i.e.,, when 7 and j refer to the same
site, and ¢(r;;) = O otherwise. The functions w(r;;)
can be set equal to zero for r;; = 0. For this lattice
system, some of the expressions we have derived
reduce to expressions already obtained by the authors
cited. For example, our F/ and #: reduce to Englert’s
semi-invariants M} and renormalized semi-invariants
M,, respectively.'® When p = } the system cor-
responds to the field-free spin system considered by
Stillinger'* and our W(r,;) reduces to his W(r,;) (for
r;; # 0). We defer further examination of these
correspondences until our next paper.

We now discuss briefly the possible range of
validity of our expressions in y. We distinguish here
the case @ < 0 and &« > 0. The van der Waals free
energy per particle A obtained formally by letting
v — 0, (after taking the thermodynamic limit), con-
sidered as a function of the volume per particle p~*
has the form®

Ao(p™) = A7) + da/p7 (7.1)

For a = 0, A, coincides with A° while for & > 0,
A°(p™") will be a monotonically decreasing concave
function® of p~'. This follows from our assumption
that the reference system has a thermodynamic limit
so that A°(o™") is a monotonically decreasing non-
convex function'® of p~'. Hence the system char-
acterized by A4,, the “van der Waals system”, will
show no first-order phase transition since 4,(p™") has
no linear region. However if the reference system
exists in two phases in the density range p; < p < ps,
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then x°(p) is infinite in this range and our whole ex-
pansion scheme breaks down [ef. Egs. (4.3)-(4.6)].
The expansion in v can thus be meaningful even for
small ¥ only outside this range of denstties.

In the second, physically much more relevant,
case where @ < 0, A,(p™") could be convex for some
range of p~* (and some range of the temperature T),
and there would be a loop in the p vs. p~' curve.
This nonphysical behavior is caused®®, by the as-
sumption that »,(r) is constant [cf. going from (6.6)
to (6.7)] while in reality n,(r) would correspond to
the coexistence of two phases since that results in
a smaller free energy. In this case the expansion in
v with a uniform density can be meaningful only
for those densities for which the van der Waals
system have a uniform density. This still leaves open
the question of the behavior of the system near the
critical point when approached from the gas side,
the coefficients of the expansion in v becoming n-
finite there. KUH' have shown, for their model, that
the v expansion breaks down in the viecinity of the
critical point (cf. also Refs. 11 and 13). It appears to
us that this breakdown is specifically associated with
the non-analytic (in v) behavior of the short-range
part of the distribution functions, and that approxi-
mations in the critical region can only be adequately
made when the effects of the long- and short-range
parts of the distribution functions are considered
separately. We shall investigate these questions care-
fully in future installments of this work.
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APPENDIX A. PROOF OF EQ. (2.15)

Equation (2.15) can be obtained by a resumma-
tion from Eq. (2.9) in much the same way that the
ordinary n,(x)-vertex, f~bond expansion of F, can
be obtained by resumming the z,(x)-vertex, j-bond
expansion.’” In both cases the only problem is to
verify that all counting comes out correctly—the
topological aspect of the recharacterization is trivial.
We prove here a lemma sufficient to establish (2.15);
it is a straightforward generalization of a lemma
found in Ref. 17 which was used there to establish
the usual virial expansion of F;, following a method
devised by Salpeter and others."’

As noted in Sec. 2, we can define Fi(x,, «-- , Xy)
for F7,(x), --- , ;)] as a sum of graphs simply by
adding to the rhs of (2.9) the stipulation that be-
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tween any pair of white vertices (or vertices) there
can be found a path consisting of K-bonds if z,(r)
vertices are used. We denote a typical graph in this
new sum by T'l(z,, - -, z;) and write

F’;(xh et yxl) = Z r;(xly tt

azl
1

X)) = 2, Dz, -
[+3

Let @ be any graph described on the rhs of (2.15)
where connected and F: (or irreducible and F7) are
considered, and let 7' be the set of all distinet graphs
Ty, T, -+ , each of which is obtained by replacing
each hypervertex £ (or F}) in G by some I'!. The
replacement is to be made in the obvious fashion,
i.e., the set of bonds that connects % (or F}) to
the rest of @ is reattached to the white vertices of
I'l and all of the vertices among these which are
replacing black vertices of F (or Fj) are then
stripped of their labels and blackened. We note that
in forming a particular T, from G, the same I} can
be used in replacing several, or all, of the hyper-
vertices ¥ (or F}). We can now prove our Lemma;:

’ xl)

[or F’{(xly -, %)) (A1)

G = the sum of graphs in 7.

Proof. The graph G stands for 1/0g times the
integral, where ¢¢ is the symmetry number of G.
We consider the sum of integrals that results when
the sum given by (A.1) is substituted for 7 (or F7)
whenever the latter appears in this integral. The
result is a product of sums of integrals, which can
be rewritten as a single sum if all of the indicated
multiplication is done. If the graph G has n black
vertices, then a typical term ¢ in this new sum will
be some integral 9 times 1/040,,64, *** 04, Where
0., is the symmetry of I'}, and the integrand of 9
is some number—call it N—times a product of n,’s
(or 2,’s), ®’s, K’s, and factors of the form [ (:;1).
(See the paragraph above Eq. (2.6) for the definition
of t;;). The number N will not necessarily be one,
since d need not correspond to a graph with a sym-
metry number equal to ogo,, ¢+ o,.,. However,
there will be other terms in the sum that are in-
distinguishable from this one in the sense that they
are all products of the same factor 1/040,, *** 04,
times integrals that differ from one another (and 9)
only by a different labeling of the dummy variables
of integration. Suppose that there are a total of s
such terms, including ¢. They can be summed up
and written as a single term, s/ogo,, *** 0., times
d. The statement of our lemma amounts to the
claim that ¢go,, * -+ 0../8 is the symmetry number
or of the graph corresponding to I. To verify this
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claim, we characterize ¢; in terms of a second
labeling. We do this by noting that if we consider
the graph obtained from G by labeling the hyper-
vertices 1, 2, --- n, then s is the number of dis-
tinguishable ways of labeling the hypervertices
1, --- , n with the labels o, -+ -, o, (The labels a;
and a; may be the same for ¢ £ j i.e. T',, may be
the same graph as T',,. If all the I',,’s are different,
s = nlIf all the I',,’s are the same, s = 1.) Now
or can be expressed as Go,, *** ¢., where ¢ is the
number of permutations among the oy, ay, -+- , a,
(or equivalently, among the labels 1, 2, -+ - , n) that
leave the doubly labeled graph invariant. But we
have also the equation

8¢ = g@a. (A2)

Equation (A2) is an expression of the fact that the
group of permutations among the labels 1,2, -+ , n
that leave the doubly labeled graph invariant is a
subgroup of the larger group of permutations that
leave the singly labeled groups invariant, and the
ratio of the orders of the two groups is just the
number of distinguished ways that the double label-
ing can be done. This follows immediately from the
appropriate application of Lagrange’s theorem relat-
ing the order of a group, the order of a subgroup, and
the number of cosets induced by the subgroup.

Using Eq. (A2) we can write ¢; = 60,, -** 0a,
a8 0g0,, **- 04,/ and we are through. Equation
(2.15) follows immediately from the lemma.

APPENDIX B. EXPANSION OF F, IN TERMS OF
REFERENCE SYSTEM HYPERVERTICES

In this Appendix we show more explicitly how
Eq. (2.18) can be used to obtain the full expansion
for the F, in terms of ® and funectionals of 7,(z)
which depend entirely upon the properties of the
“unperturbed”’ system for which ® = 0.

Combining (2.15) and (2.18), leads to a prescrip-
tion for F, that can be represented graphically in
terms of ®-bonds and new hypervertices which rep-
resent the functions

6lp2/5n,(xk+1) te 5n,(xk+z)
=H (&, -+, Xk+z)- (Bl)

Here the H, -hypervertices must be thought of as
having finite extent as we shall consider graphs in
which these hypervertices may be connected to each
other, as well as to #-bonds. In any such connected
graph an articulation hypervertex will contain two
kinds of vertices—out’” vertices that connect it
to the rooted part of a graph and “in” vertices
from which are hung pieces that would separate
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from all the roots if the hypervertex were deleted.
(Any labeled vertex is automatically an “out’” vertex,
and a hypervertex that is not an articulation hyper-
vertex has only ‘“‘out’ vertices.) The H,, defined
above will be represented pictorically by a hyper-
vertex which has k “out” vertices and [ “in”’ vertices.

//.\\
Thus | ‘ | = H,, and we have (B2)
. 4
F.(t, -, 1, = the sum of all distinct

connected graphs, rooted at m points, con-
sisting of ®-bonds and H,,;-hyper-vertices
such that there are no articulation vertices
(even though there are articulation hyper-
vertices). A vertex belonging to a hyper-
vertex can either have a single bond in-
cident upon it (in which case it must be an
“out” vertex) or be shared by another
hypervertex (in which case it must be the
“out” vertex of one hypervertex and the
“in” vertex of the other). Two hyper-
vertices can share at most a single vertex
and, as before, a single #-bond cannot have
both its ends attached to a single hyper-

vertex. (B3)

These expressions involving H,, ; are similar to
the expressions of Brout'’, and Coopersmith and
Brout'®, in the sense that like the vertex functions
of those authors, the H,,; are functions of p and 8
and depend only on the unperturbed system for
which ® = 0, (In this respect the expansions of
Brout, and Coopersmith and Brout differ from those
of Horwitz and Callen and Englert.) However, our
expansions are valid for an arbitrary system whereas
Coopersmith and Brout were unable to generalize
their lattice-system expansions to a continuum fluid
without invoking a set of superposition approxi-
mations.

APPENDIX C. HYPERVERTEX EXPANSION OF
THE THERMODYNAMIC POTENTIALS

Here we supplement the discussion in Sec. VI by
considering directly the graphical characterization
of the logarithm of &, the grand partition function.

Starting with the standard characterization'’'*® of
In E({z,(x)}) as the sum of all unrooted composite
connected graphs with K- and ®-bonds and at least
two z,(x) vertices we first isolate a subset (In E)’ = F}
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which consists of all those graphs in In Z for which
there is a short-range path between any pair of
vertices. Fj({z:;(z)}) serves as a generating fune-
tional for the F! [defined in (2.14)] in precisely the
same manner as In Z({z(z)}) does for the F,'*",

Hzl(x) oz.(zy) - 2z

A )
‘We can now carry through a functional Taylor ex-
pansion of F}({z,(x)}) about its value at z; = 0 to

yield
Z( l)t+1 f Fix,, -

Equation (C2) remains valid when either the primes
are removed from the F; or when the F} are replaced
by F{°, the values of the Ursell functions in the
reference system. In these cases F, = In E({z,(z)})
and F}* = In E°({z,(x)}) where E°(z, (z)) is the value
of E({z,(x)}) when & = 0. Having isolated F} we
now have

In E({z,(x)}) =F} 4+ the sum of all unrooted
connected gralphs composed of #-bonds and
at least two F-hypervertices.

F{(rly ) rm) (Cl)

3 xl) dxl b dx;. (02)

(C3)

To find the In = in terms of ® and functions that
depend only on the properties of the unperturbed
reference system in which ® = 0, we use an identity
relating the F/ and the F.°:

, X)) = exp {% f dy, dY2[zx(Yl)zl(Y2)

X ®(y1, ¥2) m]} & - x). (C4)

In order to obtain In Z from (C3) and (C4) we
must be given the fugacity z of the system, since
the F}® are functions of z. It is somewhat more con-
venient to be able to express In E in terms of p
directly. We can do this by working through the 7

and the functions G.(x, - - - x;) defined by

th)—l,fH‘I’(x -y)

X pz(xn .

Fl:(xls tre

Gl(Yl; N

- x)) dx,, + -, dx,. (C5)

The F}, G, and F] are related by an expression
very similar to (2.18). It is

F?(yl,-..,y;)=f)“c{exp|: k'fdxl... X,
k>1

X Gz, + - - )m}p’@u -+, ¥ (C6)
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where 91 has the meaning of a normal product as
in (2.18). For I > 0, (C6) is a graphical identity
and for I = 0 it defines 2, which can also be obtained
by letting I = 0 and /2 = {In Z}°in (2.18).

We can now use the same combinational analysis
that has been used by several authors (see Sec. 7
in Ref. 17) to show that In E and the excess Helm-
holtz free energy, @ are related by the equation

= = fdx nl(x) — Ba + fd:l? nl(x) :nﬁ(i,)

C7)

Here —BG = the sum of all irreducible simple un-
rooted graphs with n,-vertices and at least one f-bond.
This analysis yields in our case the similar-looking
equation

nEg=F+8— Efdx,, oo dx, LR, (C8)
nx1
where
S = the sum of all irreducible unrooted
graphs with F? hypervertices and at least
one $-bond. (C9)
We note that
55/6p:»(x1; te ,X,.) = Gn(xlx :xn)
® and £} for l#n fixed (C10)

so that (C8) can be rewritten in strict analogy with
(C7) as

— P8 — Zfdx, P Z}%

n>1

Furthermore, when ¢(r) = 0 so that v(r) = w(r),

we have
P = [ axm,

Ca X)) = n,(x,) H o(x, — x;)forl > 2
15ist

S = —fa;
Fix,,

and (C8) reduces to (C7). [When »(r) =
and F? = In 5.]

Since the F? and hence the G, can be expressed
in terms of ® and the functions Hy,; = 6'F2/1I én,(x,)
by using (2.18) as indicated in Appendix B we have
succeeded in obtaining In = in terms of & and func-
tionals of n,(x) and 8 that are defined completely
in terms of the reference system.

Many of the equations discussed in this Ap-
pendix reduce to lattice-system equations derived
by Englert, and Bloch and Langer, where r is re-
stricted to a set of discrete lattice sets. However
some of our equations, notably (2.18), are new even
for the special case of lattice systems.

0,8S=0



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 6, NUMBER 8 AUGUST 1965

Fokker Action Principle for Particles with Charge, Spin, and Magnetic Moment*

A. ScHiLD AND J. A. SCHLOSSER
The University of Texas, Austin, Texas
and
The University of Chicago, Chicago, Illinois
(Received 12 October 1964)

A Fokker action principle is obtained for a system of particles with charge, spin, and magnetic
moment, interacting through time-symmetric electromagnetic fields. Conservation laws are derived
for the energy, and the linear and angular momentum of the system. A limiting process is performed,
which involves a renormalization of mass, in order that the magnitude of the spin of each particle

remain constant.

1. INTRODUCTION

N a previous paper,’ one of us outlined a program
for the study of the relativistic motion and the
Bohr quantization of a system of two classical par-
ticles in electromagnetic interaction. The prineipal
device in carrying out such a program consists in
starting with a Fokker action principle. This results
in time-symmetric (half-retarded plus half-advanced)
interactions which permit periodic motions to which
Bohr quantization can be applied. A Fokker action
principle also gives, in a natural manner, finite ex-
pressions for the energy, linear momentum, and
angular momentum of a system, which automatically
include contributions of the electromagnetic field.
In this paper we develop a model of a classical
particle which has charge, spin, and magnetic mo-
ment.” We obtain a Fokker action principle® for a
system of such particles, and derive conservation
laws and expressions for the 4-momentum and an-
gular momentum of the system.
During the motion the spins of the particles change
not only in direction but also in magnitude. In order

* This research has been sponsored by the Aerospace
Research Laboratory, Office of Aerospace Research, U. 8.
Air Force.

1 A. Schild, Phys. Rev. 131, 2762 (1963).
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are J. Frenkel, Z. Phys. 37, 243 (1926); L. H. Thomas, Nature
117, 514 (1926); Phil. Mag. 3, 1 (1927); H. A. Krammers,
Physica 1, 825 (1934). Some recent papers, which include
references to earlier work, are: H. C. Corben, Nuovo Cimento
20, 529 (1961); 28, 202 (1963); Phys. Rev. 121, 1833 (1961);
131, 2219 (1963); 134, B832 (1964); Proc. Natl. Acad. Sci.
U. 8. 48, 387, 1559, 1746 (1962); J. B. Hughes, Nuovo
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to have a classical model of elementary particles
with constant magnitude S of spin, a limiting pro-
cedure is adopted where the moment of inertia of
each particle tends to zero while S remains finite.
This requires a renormalization of the mass. Re-
normalized equations of motion and renormalized
expressions for the conserved quantities are obtained.

A study is in progress of some special motions
of two particles in circular orbits. The results of
this study will be published in a later paper.

2. KINEMATICS OF A SPINNING PARTICLE

The metric of Minkowski space—time is
ds’ = n,, dz" dz’

= —(dz')® — (d2*)* — (dz®)® + (dz*)’. @.1)

Greek suffixes range and sum over 1, 2, 3, 4; the
the space-time coordinates 2* = (r, ¢) are real;
the Minkowski metric 7,, is used to raise and lower
tensor suflixes; the scalar product notation 4-B =
AB* = 9,4"B" will be used.

The motion of a spinning particle is characterized
by

x”(u); a(m)”(u)y (22)

where
(2.3)

The translational motion of the particle is de-
termined by its timelike world line z*(w), u being
some parameter. The dot denotes differentiation with
respect to the parameter w, so that #* = dr*/du is
the 4-velocity with respect to u.

The rotational motion of the particle is determined
by the orthonormal triad of vectors a,,” orthogonal
to the world line. Latin suffixes serve to label the
different vectors of the triad, and range and sum
over 1,2, 3; s = — 90, Serves to raise and lower
triad labels, e.g., G(m)* = 7ma@™* = —a“™*. Sinee:

C(m)*C(a) = TNmny Cimy & = 0.
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Fia. 1. The Firmi differential,

Omy” and 2" span the four dimensions of space-time,
we have the completeness relation

8 = Q0™ + B2/ 2.4)

The triad a(.,” plays the role of the body-fixed
triad in the Newtonian theory of a rotating rigid
body. In Newtonian theory a body is nonrotating,
its angular velocity is zero, if the vectors a,.,” remain
constant. In relativity theory, with the metric (2.1)
of Minkowski space, we cannot use the constancy
of the components a,,,", 1.e., the parallel transport of
the triad a.,,” along the world line z"(u) of the
particle. This is because a vector which is originally
orthogonal to a curve will not, in general, remain
orthogonal to it under parallel transport. We there-
fore replace parallel transport by Fermi transport.
Fermi transport of a vector ¢"(u), orthogonal to a
curve at the point v, to a neighboring point » + du
is achieved by adding to the parallel-transported
veetor a component dpa” = 2"d\ tangential to the
curve, so that the vector af(u 4 du) = a*(u) + dpra”
is orthogonal to the tangent vector i* 4 #'du. This
gives dpa” = —&"%-adu/%-&. Consider now a vector
field a*(u) defined along the curve 2*(u) and which
is everywhere orthogonal to the curve, so that

(2.5)

and therefore £-a = —i+d. The Fermi differential
da* = da* — dpa” measures the deviation of the
veetor a*(u -+ du) from the Fermi-transported vector
af(u -+ du), as shown in Fig. 1. The Fermi derivative
%" = dya"/du is given by

Za =0,

°q* = ¢" — 'T-d/E &, 2.6)
and it clearly satisfies
°g+3 = 0. 2.7

The angular velocity of the spinning particle with
respect to the parameter u is measured by the Fermi

A. SCHILD AND J. A. SCHLOSSER

derivative °e,,”* of the triad, and is defined by

" = oa(m)“a(”‘)’ = ""63”) (28)
or, equivalently, by
Oa(m}u = &MVa(m)y. (2.9)
Clearly,
fbﬂ&’#v = = aﬂvx-’. (2'10)

In the instantaneous rest frame of the particle,
in which #* = (0, '), we have a..," = (2w, 0),
CUmy” = (A, 0), & = & = & = 0. If we de-
fine 0 = (&%, &*, @), Eq. (2.9) becomes 4, =
@ X &, the usual equation for an angular velocity.

The physical angular velocity of the particle, or
angular velocity for short, is the angular velocity
«" with respect to the proper time s. It is given by

o = &/ (i)l @.11)

Our model for a particle with charge, spin, and
magnetic moment will be as follows: The particle
is characterized by four constants, the (rest) mass m,
the electric charge e, the moment of inertia I, and
the gyromagnetic ratio @. The spin ¢*” is given by

" = Iw*, (2.12)
the magnetic moment u** by
= Gt (2.13)

This corresponds to a classical rigid body with equal
principal moments of inertia, and with a magnetic
moment proportional to the spin. For a classical
Dirac electron, the gyromagnetic ratio is G = e/m.*

3. VARIATIONAL PRINCIPLE FOR A PARTICLE
IN AN EXTERNAL ELECTROMAGNETIC FIELD

We shall now study the motion of a spinning
particle in an external electromagnetic field with
4-potential A, = (—A, ®) and field strengths

va = An,v - Av,m (3‘1)

where the comma denotes partial differentiation with
respect to coordinates, e.g., 4,, = 04,/3z°. The
electric and magnetic field components are E = (Fy,,
Fyyy Fa,) and H = (Fy, Fyi, Fra).

For the action of the particle we choose

Jr= [ La, 3.2)

L = m(@-i) +ed i — 116,,6" /(G- &)t — 11Ga,, F*.

(3.3)

4 The referee kindly points out that this last statement
can be challenged. In many respects, a spinning charged
particle with & = 0 behaves like a classical Dirac electron;
cf. H. C. Corben, Phys. Rev. 121, 1833 (1961). ‘
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This expression for the action is independent of the
choice of the parameter u along the world line of
the particle. If the arc length is taken as parameter,
it becomes

T = j:"Lds= f [m ds + ed-de

— w0 ds — 11Gw, F* ds]. 3.4

In the element of action I du, the first term is
[m — imv® 4+ O(*)]dt and represents the transla-
tional kinetic energy. In the instantaneous rest
frame, the third term becomes —1lw’dt and rep-
resents the rotational kinetic energy, the second and
fourth terms become e®dt and —u-H df and represent
the potential energy of the charge ¢ and of the
magnetic moment y = IGe in the external electro-
magnetic field.

The translational motion of the particle is varied
by a variation éz*(u) of its world line. The rotational
motion is varied by variations éa,.,"(u) of the body
triad. The new triad a(.," + 8a.," must be ortho-
normal and orthogonal to the new world line, whose
tangent vector is £ 4+ 84*. The most general varia-
tion of the triad, which satisfies these conditions,
is given by

8U(my” = — B Ay 05/T % + 6D (mma ™", 8.5

(3.6)

The independent variations are the four components
of 6z"(u) and the three components of the skew
symmetric expression 8b .., (1).

The equations of motion of the particle are ob-
tained from the principle of stationary action. It
states that, for the physical motion,

6b(mn) = _6b(nm)-

5T = 0, 3.7)

for variations éz" and 8b,., which are arbitrary,
except that they must vanish at the two endpoints.

It is convenient to retain at first the general
parameter «. Since the action J, Egs. (3.2) and (3.3),
is independent of the parametrization, we can
always arrange it so that the physical and the varied
world lines have the same initial parameter value
u* and the same final value u**. As soon as the
variation has been performed, we simplify the re-
sults by identifying » with the arc length s along
the physical world line. Thus, after the variation
has been performed, we shall have

d = da/ds,
We then have

&z =1, a" = o, (3.8)
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8" = —8b" + 28b°1"(", — #%,)
— 2627 + 28" 5. 8¢ + 22™0™,82%, (3.9)

where square bracketted suffixes are to be skew sym-
metrized, e.g., A" = (4" — A”*), and where

80" = dad*’/ds, 80" = a"*a"™ " §b(mmy, (3.10)
so that
8 = —8b™, 8"z, = 0. (3.11)

For a tensor defined alongthe world line z*(s),
we shall use the symbol 1 to indicate that all
tensor suffixes have been acted on by the projection
operator @, ,a™’ = 8 — %4, i* = dz*/ds, so
that all tangential components are reduced to zero
and all components orthogonal to the world line
are retained unchanged. For a vector a,

(@) = a* — i"i-q, (3.12)
and for a skew symmetric tensor ¢*” = —a™,
(@), = @ — &'E.a"" — a*E.8".  (3.13)

We denote the orthogonal projection of F,, by H,,:
H,=F,).. (3.14)

The Fermi derivative of a vector field o* = (a"),,
defined along the world line and orthogonal to it,
is given by

°a" = (@), (3.15)

and, similarly, the Fermi derivative of a skew-sym-
metric tensor a*” = —a™ = (a¢""), is defined by

°¢” = (d").. (3.16)

Equation (3.9) can now be rewritten in the useful
form

5 = —(80™)° + 286",
— 2&"%85" + 283" % 0 + 2¢"0" 027,

The variation of the action is

3.17)
st = f ds l:—mz + ei'F,p — 3Go""F 5.,

-+ Zid.—s (a,,,:ii" — ‘:—I— oapo*’s, + IGH &

+ GF s3°c )]ax 1 f ds [°c,, + IG°H,,

-+ 2GHa[“0'y]a]5b‘" + {‘:m.’iﬁ“ + eA“ - 0',“,.’2,

+ 43[ oopo?i, — IGH,,&" — GF 5t ilax}

+ {30, + IGH,,]6b*}2".

i

a*

(3.18)
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Applying the principle of stationary action, the
integrated terms drop out, since the variations éz*
and 8b*” vanish at the end points s* and s** The
translational equations of motion are obtained by
equating to zero the coefficient of éz* in the first
integral:

mi, = ex’F,, — 1Go**F 5.,

+ Z—s (au,,:ﬁr — % 0opo”’i, + IGH & + GFaﬁd;aa'ﬁ“) .

(3.19)

The rotational equations of motion are obtained by
equating to zero in the second integral, the skew-
symmetrized and orthogonally projected components
of the coefficient of 8b*”. These are the coeflicients
of the three independent variations 8" = 8" =
(86**),. The rotational equations are

°¢p = 2GH 41,0, — IG°H,,. (3.20)
To these equations must be added
ot = 0. (3.21)

These equations of motion jmply &-& = 0, so that
they are consistent with the requirement -2 = 1.
They also imply the following first integral of the
motion:

15,0 + IG*’H,, + 3I°G°H"H,, =

3 S = const.

(3.22)

Thus our particle will not, in general, have a spin
of constant magnitude (30,,0"")} as it moves in an
external electromagnetic field.

We wish to have a classical model of an elementary
particle whose spin has constant magnitude. This is
achieved by taking the limit of the above equations
when I — 0, while ¢,,, 8* and

m' = m + §/21 (3.23)
remain finite. We regard m' as the renormalized,
physical rest mass. Rewriting m’ as m, the re-
normalized equations of motion are
mi, = ei'F,, — 3Go"°F 5.,

+ (d/ds)(0,,&" + 3Go**H gt + GF.52%0%,), (3.24)

°0u = 2GH 140", (3.25)
These equations have the first integrals -4 = 1 and
(3.26)
The renormalized equations of motion agree with

those given by Corben and Stehle.®

s H. Corben and P. Stehle, Classical Mechanics (John
Wiley & Sons, Inc., New York, 1960), 2nd ed., p. 308.

c.%" = 0.

to,,0" = S? = const.

J. A. SCHLOSSER

4. THE FOKKER ACTION PRINCIPLE

We consider an isolated system of N spinning
particles, with world lines x{(u,) and angular veloc-
ities @";(u,4) with respect to u,. Capital subscripts
label the different particles and range from 1 to N.
We do not adopt the summation convention for par-
ticle labels; all summations over particles will be
shown explicitly.

For the action of particle A we take

JA = f duA [mA(:i:A'.i'A)* _— i‘IA ﬂgyw_“;
- (£a°Za)

+ eAAA':bA e %IAGA(:)AMVFAM,]. (4.1)

The following action principle is then equivalent to
that of the previous section: for the physical motion
of particle 4,

3. =0 “.2)

for arbitrary variations 6z,"(u4), 8b4mn(u4) Which
vanish outside an arbitrary but finite interval (4,,u.,)
of its world line.

The electromagnetic field A,, acting on particle
A is that due to the other particles of the system.
In order to obtain a Fokker action principle, we
must choose the time-symmetric fields of the other
particles, i.e., the half-retarded plus half-advanced
fields. The time-symmetric potentials due to the
charges and magnetic moments of the other par-
ticles are given by

A= [eB f dus 5(AB)ip,
(Boa) -
+ 1.G, f duy o3, aA,a(AB)], 4.3)
where

6(AB) = 6[(xA - xB)‘(xA - Z'B)] = 8(BA), (4.4)

where §[z] is the Dirac delta function, #, =
dxp,/dugs, and 94, = 98/0x,".

If we substitute this into the last two terms of
Eq. (4.1), the interaction terms, we obtain

f dug [esdy dq — IAGAG’AMGA:AA”]

= Z f f duA duB [eAij:A'i'B(S(AB)
B —_c0 -

(B#=4)
+ €4l 3G584,05"04,8(AB) — €5l 4G 4i5,5,""34,8(AB)
— LG TG00, 05,704 104,6(AB)]. @.5)
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Because 8(AB) is a function of the combination
x,;” - xB”,

34,6(AB) = —95,8(AB),
aA i'eAcrs(AB) = aB ?ch‘s(AB)'

It follows that each term of the sum on the right-
hand side of Eq. (4.5) is symmetric in the particle
labels A and B. It is this symmetry which makes
possible the introduction of a single action principle
for the system of N interacting particles.

Consider the Fokker action, defined by

J = ;ﬂ:dud®4

+ 3 AZB;’ ‘[_w /;n duy dug Ayp, (4:.7)

4.6)

Bamiy"”
(x'a '33'.4)

, 48

O, = mA(j’.A'-’i:A)* ~ 34

Asp = Aps = esepts-i53(AB)
+ 6AIBGBIIEA‘“(:)3“”34,5(AB) — egIAGA:iZB,‘cEA“GA,é(AB)
- IAGAIBGB&)‘;;(BB;GA ;aAaﬁ(AB), (4:.9)

where the prime on D%, denotes that the double
summation is to be carried out over pairs of distinct
particle labels only (4 = B).

The equations of motion of the system of particles,
interacting through their time symmetric electro-
magnetic fields, is given by the Fokker action
prineiple

24t

dsa [Xaud2a" + 3204 8b4"]

A*

=3 [
A L]

4 3 [Xaubrs” + 304, 0b A0 + 2
A

AB ag*

L pt*

dAsx

FYLL
dsg [YAB;:&??A“ - (6&2) 533:1”]
K7 pa
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oJ =0 (4.10)

for arbitrary variations 8z,"(u,), 854 (mm (44) which
vanish outside arbitrary but finite intervals (i, %4)
of the world lines.

The part of the Fokker action J which contains
the variables describing the motion of particle A4,
is precisely the expression J, of BEq. (4.1). Thus
when these variables are varied, the Fokker action
principle gives the correct motion for particle A.
Since the Fokker action is symmetric in the par-
ticles of the system, it gives the correct motion of
all the particles.

The integrals in the Fokker action J do not all
converge, so that J is not a well defined concept.
However &/ is always well defined for any choice
of finite intervals (4., u4) outside of which the mo-
tion is not varied, so that the Fokker action principle
(4.10) has meaning.

In order to derive conservation laws from Lorentz
invariance we study the finite Fokker action

uAr*

z L.
w4 TF Y Lhd
+3 E’f f dus dug Ass.  (4.11)
AB uwA®* up*

We now vary the finite action and, as in Sec. 3,
introduce the arc lengths as parameters immediately
after performing the variation, so that from here
on uy = §, and dots denote d/ds,. We obtain

% —
JE =

d’uA @4

Ow 4

Ly fA f,w dor dos [( _ dY‘B*‘)ax
AB s4* sB* a(xAp el xB“) dsA

Here 9A,5/9w,"” means first differentiate A,p, Eq.
(4.9), with respect to @,"*", then replace &3*” by wz"’,
and finally skew-symmetrize with respect to u and »;
1 A means that the orthogonal projection is taken
with respeet to the world line z,“(s,) of particle 4;
°A denotes the Fermi derivative along z,"(s4). Also,

XA“ = (mA -+ (1/4IA)°'Aaﬂa'Aaﬁ)jdu - dAuvﬁA'J
dA dA Ly dAup . o
Vun, = 208 4 of08an) gr g g Ohan g,
xA" Ow, /L4 OJwy

Zasw = 2[ Ohas wA“,‘):‘ @.13)
g 14

04
A“—}-{((@%) ) —{-Z,,Bp,}ab["]. 4.12)
O,/ ra

We have used the identity sign to indicate that
Eqgs. (4.11) to (4.13) hold, whether the equations
of motion are satisfied or not.

The Fokker action principle,

lim  8J%* =0,

B AT =0, 8 A ¥V

(4.14)

for arbitrary variations of the motion which vanish
outside arbitrary but finite intervals of the world
lines, yields the equations of motion of the system,

.,.XM.*_ Z f dvgg( 0A,p _ dYABu) =0,
B -0

B K ds
(B#=4) 8(334 23) 4

(4.15)
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fdsB

(B#A)
x[((2),)"
dw,"/ 14
By Eqs. (4.5), (4.9), with the choice up = sp,
E f d83 AAB = eAAA'ij - %IAGAO)AWFA",.

B
(B=4)

[=]
—% aA.ur

+ ZAB#I] = O' (4'16)

“.17)

Substituting this into Eqgs. (4.13), (4.15), and (4.16),
we obtain the equations of motion in a form which
corresponds to those of Sec. 3:

d 1 aB ). .
‘E [(mA + ;ﬁ: T4ap04 ﬂ)%»] = €484 F 40u

lG af d w ¥

— 2U404 FAaﬂ,M + E [aAuva

4 GuFgapiacs’, + I.GH i), (4.18)
0 aw = 2G4H 401,04%1 — 14G4°H 4,,. 4.19)

As before, the following integrals of the motion are
obtained:

il + IAGAO'A‘"HA;"
+ %‘IAZGAzHA“VHA“' =
where S, are constants.

5. CONSERVATION OF LINEAR MOMENTUM
AND ENERGY

From the Lorentz invariance of the finite Fokker
action (4.1) it follows that

I =0 (5.1)

is satisfied identically for variations of the motion
of the system which are induced by infinitesimal
Lorentz transformations. This gives rise to ten ident-
ities. In this section and the next it will be shown
that, by virtue of the equations of motion, these
identities can be put into the form of conservation
laws.

Consider the variations induced by an infinitesimal
space—time translation,

%O'AM'A

82, (4.20)

§b," =0, (5.2)

where ¢ is a set of four infinitesimal constants. By
Egs. (4.12) and (5.1), this gives the identities

- f dsy X+ X [Xadisd
) A

gp**

dsp [Yamliss

sB*

B __ B
0T 4 = €,

+ >
AB

A. SCHILD AND J. A. SCHLOSSER

a4t 2 p**
+ E’f f ds, dsp
AB sa* sB*

x [t a2,
a(xA - xB )

= (5.3)

Substituting for X,, from the translational equa-
tions of motion (4.15), this becomes

> Xl + T [ dsa (Vs

BA** sp* A
— 3 + )dsds-———“’ =0.
4; ‘/:A' <-/l s p** 4 86(5174“‘—'138")
(5.4)

In the last term, the integrand A, z/0(z.* — z5")
is skew-symmetric in A and B. Because of the double
summation it follows that the integral operator can
be skew-symmetrized to give

LU L) =5 L
LL-T0T)

LT e
Equation (5.4) can now be written
[; Xaw + Z’ f‘” dsp Y g,
S (L= L) s
X ﬁ]** - o. (5.6)

Since the s,* and s,** are two independent sets
of points, we obtain the laws of conservation of
linear momentum and energy,

P, = EX“ f dss Y ap,
;AB (f f_w f f)dSAdSB
% _ OMp const, (6.7)

s — x5")

ie., P, is independent of the choice of the points
81, 82, *** , Sy, one on each of the world lines of the
system.

Using Eqs. (4.13) and (4.17), we find

1
E [(mA + 4[ T4ap04 ﬂ>i'Au - O-AnvjA,

A

P, =

+ eaday — GuF4apts” O’A w — TaGaH 4%, :I
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i -T2
9Aan

s — 25"
6. CONSERVATION OF ANGULAR MOMENTUM

(5.8)

Counsider the variations induced by an infinitesimal
space—time rotation;

6.1)

where €, = 75,¢, is a set of six skew-symmetric
constants:

3 3 »
53:A = € T4

6.2)

Under this rotation, da, .,* = €,04( and thus,
by Egs. (3.5), (3.6), (3.10), we obtain

84" = —(¢")1a-

€up = T"€pu.

6.3)

We also have

ur

= 2%, ., (6.4)

directly from the tensor character of w,", or else
from Eq. (3.9).

First we establish a simple identity which will
be required later. From the Lorentz invariance of
A4p 1t follows that

dw A

(2.9 o Ahdap
8Ayp = —F— &1, — 25,) + —F 5
AB a(xA“ - xB“) ( 4 B) 6;1':4“ A
+ aAAB ;w E5s + 2 AB ;wiAa“
6.703“ A
+2° 984n oy, = 0. 6.5)
B

Equating to zero the part of the coefficient of
which is skew symmetric in z and », and rearranging
terms, we find that

9A4s
3 Ar]

is skew symmetric in the pa.rtlcle labels A and B.
Substituting from Egs. (6.1), (6.8) into Eq. (4.12},
we have the identities

—Zf

+ AE [2xAI;AX49] + dApv]:i:*
2p** 9A Pl
+ Z’ dsp 2 [xAI#YABrl - (_“éf> ]
AB [¥] 6&04 14 dsar

2A*E s gt
f f dSA dSB
AB

GAAB aAA «

B, Gam

+ & A[.u , + 2 (6.6)

Tate 77,

EF S

ds, [zxA[yXA»] + OO.A;W]

1305
JA dY
X [ #( AB _ ABv])
i A" — zs™) ds.
ETN "4
+ ((—A:%) ) + ZAB;.W] = O. (6.7)
Jw, /14 .

Using the equations of motion (4.15), (4.16), and
integrating by parts, this becomes

; 2240, X a0 + anliie

+ E’f dsp Q[xA[nYABvI
AB -0
G/ 14 dsan

BAX* ap* o
R ) wn
AB s4* — Iy ok
94z Ay

N
4lu 6(1?4” . xﬂv]) 32.)4”

+ 3.3.4{::

4 g Qs w,,“,.,] - 0. 6.8)

[
awAa v

As was shown above, in Eq. (6.6), the last integrand
is skew symmetric in 4 and B. We can now proceed
exactly as we did from Eq. (5.4) to Eq. (56.7). We
obtain the law of conservation of angular momentum:

L(O)#v = ; [zxA[uXAvl -+ UA,W]
+ Z'f dsg Z[xupymﬂ — (QA%) ]
4B Y- Jwy" /L4
w© 8B 84 «
e (0= [0 L) aneae
AB 24 bl - oo & B

9A4n .
X [xA[“ a(xAvl _ xarl) + Latp F

dA4p
a[,“’A »1 | == const,

+2 ©6.9)

ie., Ly, 18 independent of the choice of the points
83, Sz, *** , Sy, one on each of the world lines of
the system.

Using Eqgs. (4.13) and (4.17), we find

— af .

Ly = E[ (mA + = O'AapG'A )xuu-’mv}
A

+ O’A;u

+ 2e4T4 10 ) — 2G4F 4 0pta " Ta1u04° 0

w0
- 21’4 [« ar] P

- QIAG,ng ;BHA,}aiﬁAa + IAGAHA‘“,]

w3 L) e
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0A4n

N
Alp a(xAv] _ va!)

g, Raz 4 g aA‘a 3 wA",,,]. 6.10)
0%, oy

The conserved quantity L,,, i8 the angular mo-
mentum of the system about the origin of space—
time. The angular momentum L,,,, about another
event a” is obtained by replacing z,* by z,* — a"
It is then immediately seen from Egs. (6.9) and
(5.7) that

L(a),‘, = L(o)“, - 2(1[‘,P,|. (6.11)

The relativistic center of mass of the system can
now be defined in the usual way, assuming P, to
be timelike. It consists of those events ¢* for which

L.,.P" = 0. (6.12)
The solution is
¢ = L(O)"va/PnPa + XP”, (6.13)

where A is arbitrary. These events ¢* clearly lie on
a straight line parallel to P* the world line of the
center of mass.

7. THE RENORMALIZED EQUATIONS.

In order to have a theory for a system of particles,
each with a spin of constant magnitude 8,4, we per-
form the limiting operation and mass renormaliza-
tion discussed in Sec. 3. We let I, — 0, while
a4, 84 and

m,A = my + 542/2IA (7.1)

remain finite. This procedure not only gives finite
equations of motion, but also finite expressions for
the conserved quantities. Following the mass re-
normalization, we drop the prime and rewrite m’s
as m,. We then have the following:

The equations of motions (4.18), (4.19) become

- %GAUAaBFAaﬁ,y
+ (d/dsA)[UApva' + %GAUAupHAaﬁj:Au
+- GAFAaﬁ:i;Aao'Apu])

o
00'4,.: = 2G4H4aln0'4 vl

Mada, = ety Fyay

(7.2)

" =0. (7.3)

T4 uvj:A
They have the first integrals
(7.4)

The linear momentum (5.8) and the angular mo-
mentum (6.10) of the system become

P‘, = ; [(mA — %GAUAaﬂHA,,p).'tA“

1 af __ 2
3040804 = SA .

A. SCHILD AND J. A. SCHLOSSER

— Gapds” + €A, — GAFAaﬂj:Aao'Aﬂu]

w3 LD e
dAun

6(3:4“ - xB")

Ly, = ‘4‘: [2(m, — 3G, HAaﬁ)xAluxAr]
“ + O'Aur

F 2642410440 — 2G4F 4 osts “Ta1u04°)]

+ g (L= [ o
X [xuu @(?—AAB—T

—z5")

. JA dA «
+ T4 ,AB + 2 Aj, 04 M]:l)
61: O'A

X , (7.5)

— 224140451 aFa

(7.6)

where

Aup = eqepi,i56(AB)

+ eAGBx.AMO'B“' aAva(AB) - GBGA@?»O'A“ 34,5(113)

— GuGs04" 0. 84t 84,6(AB). 7.7

Equation (6.11) remains valid for the renormalized
conserved quantities, and Eq. (6.13) gives the rel-
ativistic center of mass.

We shall now check directly that the renormalized
momenta are conserved as a consequence of the
renormalized equations of motion. We calculate the
partial derivative of P,, Eq. (7.5), with respect to
84, l.e.,, with respect to the motion of the point
chosen on the world line of particle A along that
world line, leaving unchanged the other N — 1
points on the world lines of the other particles,

P

ot = == (my

8 .
aSA ds - %GAUAO‘ HAaﬂ)mAp

.o« B
— Ouwds’ — QuF qopt40y n]

+ eAAAn.v:i;A, -

(B#A)

By Eq. (4.17), the last two terms become

A4z

> [ e (49)

eAAAu.vx.A, — eAAAv,ui?A' + %GAUAaﬁFAaﬁ,u
= —s8 Fars + 3Gu04F yep,,-
Substituting this into Eq. (7.8) we find that
dP,/ds, = 0
by virtue of the equations of motion (7.2). Similarly,

we show that 8L o,./084 = 0, so that the con-
servation laws remain valid after renormalization.
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In view of the past attempts by Born et al. to explain elementary particles using the Born reci-
procity principle as a postulate and of the recent success of unitary symmetry schemes, it is sought
to establish a contact between the reciprocity principle and unitary symmetry in connection with the

problem of elementary particles.

EARLY a decade and a half ago, Born and his
collaborators' published a series of papers in
which they attempted to explain elementary par-
ticles using the Born reciprocity principle (BRP) as
a postulate and, more recently, we reported® a
theory of quantization of elementary-particle masses
using the same postulate applied to an “internal”
space—time such as the one proposed by Yukawa.?
In view of the recent apparently successful applica-
tions of the various unitary symmetry schemes among
which the most noteworthy are the SU(3) scheme
of Gell-Mann and Ne’eman,* the U(3) scheme of
Okubo® and the more recent SU(6) scheme by Pais
and others,® it seems quite natural to ask whether
the reciprocity postulate makes a contact with such
a unitary symmetry scheme. In this paper, we show
that, used as the sole postulate, the Born reciprocity
principle gives unitary group U(n) for the symmetry
of elementary particles when the postulate is used
in n-dimensional (isotropic) vector space C,. This
clearly differs from the previous attempts'* which
applied the postulate to four-dimensional Minkowski
space instead of an isotropic n-space C, which is
adopted here.

Let the n-dimensional vector space C, be respon-
sible for all the “internal” physical observables such
as mass, electrical charge, isospin, hypercharge and
possibly the particle spins. For C,,’ let us define

* Supported by the U. 8. Air Force Office of Scientific
Research.

1 M. Born, Nature 163, 207 (1949); M. Born and H. S.
Green, Proc. Roy. Soc. Edinburgh A92, 470 (1949), and
Nature 164, 281 (1949); H. S. Green, Nature 163, 208 (1949);
M. Born, Rev. Mod. Phys. 21, 463 (1949).

2 E. E. H. Shin, Phys. Rev. Letters 10, 196 (1963).

3 H. Yukawa, Phys. Rev. 76, 300, 1731 (1949); 77, 219,
849 (1950).

¢ M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne’eman,
Nucl. Phys. 26, 222 (1961).

¢ 8. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).

8 A. Pais, Phys. Rev. Letters 13, 175 (1964); F. Giursey,
A. Pais, and L. Radicotti, Phys. Rev. Letters 13, 299 (1964);
F. Giirsey and L. Radicotti, Phys. Rev. Letters 13, 173
(1964); T. K. Kuo and T. Yao, Phys. Rev. Letters 13, 415
(1964); M. A. B. Bég and V. Singh, Phys. Rev. Letters 13,
418 (1964).

7 The question of whether this represents a “space-time”
or a “field space” is irrelevant for the present purpose.

as the basic coordinates of C,, n canonically conjugate
pairs of dynamical variables (z,) = (21, T, * - , Z.)
and (p,) = (py, P2y **- , P.) Which satisfy the ca-
nonical commutation relations

[r,, 0] = +16, u,»=1,2,3, --- 1)

[Here, (z,) and (p,) are defined to be dimensionless.]
In C,, the dynamical observables may be represented
as operators given in terms of the variables (z,)
and (p,). As a postulate, we now subject the dy-
namics of C, to BRP, which states that the funda-
mental equattons of physics are symmeiric in the
canonically conjugale peirs of variables. Considering
that the dynamics of C, occupy the most fundamental
realm of nature, the postulate asserts that BRP is
most strongly realized in C, in such a way that all
“mnternal” dynamical observables maintain reciprocal
symmetry between (z,) and (p,). This is to be con-
trasted with the more macroscopic realm of nature
in which BRP is known to be obeyed by a few fun-
damental equations (e.g., commutation relations
and Hamilton’s principle) but not in all aspects of
dynamies.

Mathematically, an operator is a “reciprocal op-
erator” if it is invariant under the ““reciprocity trans-
formations” (RT) of Born.' According to Rayski,®
the (2 X 2) matrices

i G (Gl (50
form the common divisors for all such unimodular,

unitary transformations which we denote as R(2).
In all, there are four such transformations in E(2):

RB.=I;, R, =®; R;=¢€; R,=®&XE@, 3)

EOR

@

where

Iaﬂ = 6aﬁ(ayﬂ = 112)1

(Raﬁ = - 6aﬁy

=50 1)

8 J. Rayski, Nuovo Cimento 2, 255 (1955).

€Y
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Here, o, 8 = 1, 2 refer, respectively, to (z,) and (p,)
represented as two components of the same column
(row) matrix such that

)

(Xu)l = Zyu;

X, =
(Xu 2 = Py, (5)

(X!,l)a = ; Raﬁ(X#)ﬂ'

Note that these transformations preserve the vector
character of the operators (z,) and (p,), and thus
do not mix the indices, g, » = 1, 2, 3, +++ , n. In
terms of the RT of Eq. (3), we may now restate
the postulate as follows: In C,, all dynamical op-
erators in (z,, p.) Which represent the “internal’’ phys-
1cal system are invariant under the canonical reciprocity
transformations of B(2).

This postulate then provides us with a mathe-
mathical basis for the transition from a purely geo-
metrical deseription of C, to a physical description.
Clearly, the most natural procedure for accomplish-
ing this transition is to search for all possible op-
erators [in terms of (x,) and (p,)] which are invariant
under the RT of R(2) since all “internal”’ physical
observables may be constructed out of such operators.
One need not go very far to discover that the num-
ber of such operators of the fundamental type is
highly limited. The fundamental RT-invariant op-
erators (bilinear in z and p) are given by:

1. 6, =iz, p], ©]
II. S“y = Sy“ = (xyxv + pp.pv)y (7)
II. 7, = -T,.= @p, —px) w=». (8

Aside from the very special operator 8,,(= 1, u = »;
= 0, u # »), there are in all »* number of operators
which include in(n + 1) number of symmetrical
operators S,,, and in(r — 1) number of antisym-
metrical operators T,,. Further, the in(n 4+ 1) num-
ber of symmetrical operators contains » number of
diagonal operators (8,1, Sss, *++ , S,.) and 3n(n — 1)
number of off-diagonal operators S,,(v ¥ »). Note
that the n diagonal operators of the form, 38,, =
1(z3 + p?) are simply the n partitions of the Ham-
iltonian of an n-dimensional ‘“harmonic oscillator.”
All other RT-invariant operators can be constructed
from these n® operators of the fundamental set given
above.

By virtue of the canonical commutation relation
[Eq. (1)], the n* symmetrical and antisymmetrical

ERNEST E. H. SHIN

operators satisfy the following commutation rela-
tions:

7'._1 [Suvr SM‘] = {BMKTV)\ + 6vxTu)\ + 6y)\T‘u + BMRT"} »
[Tuvy T)\x] = _[Suvy S)‘x] (”’ # v, )\ # K)! (9)
7"_1[17;"" S)\K] = {614)\va + 5“8:’)\ - Bhrsux - avxSp)«}-

These n° independent operators give the generators
of unitary group U(n), and give (n* — 1) traceless
operators which are the infinitesimal generators of
unitary unimodular group SU(n). Let us now use
the Dirac ladder operators for the harmonicoscillator,

7" = (1/v2)(=, + ip.),

i = 1/VD@. — ip) = (1), (10)
W a]l=8 (r=12,3, - ,n),
and define n* mixed tensors,
45 = (1"1,), (11)

which are given by linear combinations of the n’
operators, (8,,) and (T,,), in the form

A = {8, — iT,}. (12)
These n’ mixed tensors now satisfy the Lie equation,
[4}, AX] = {8:4] — 8,A%). (13)

Since they are given by linear combinations of
RT-invariant operators, all n* of (4%) are also RT-
invariant and therefore form a fundamental set of
RT-invariant operators along with the very special
tensors 8. All other RT-invariant operators can be
constructed from (4%): e.g.,

T, = ad, + bA) + c(4-A); (14)

is RT-invariant.® Of the n® independent operators,
only (n® — 1) of them are traceless. These traceless
operators are fundamental traceless RT-invariant
operators and are also the infinitesimal generators
of the unitary, unimodular group SU(n).

Inasmuch as (z,) are the basic “coordinate” op-
erators and (p,) the corresponding “momentum”
operators of C,, the n® operators (A4%) operate on
@) (z.), (p,); (ii) all operators constructed from (z,),
(p.), or both; and (iii) functionals of (z,) or (p.).
Let g and g~ be the unitary transformation gen-
erated by one of the n® Hermitian operators, G.
Operating on (»,) and (7,), we have'

% The well-known Gell-MannQOkubo® mass formula is
obtained by using 7;* as the symmetry-breaking term in
U(3) or SU(3) scheme. Therefore, we may consider the
Gell-Mann-Okubo mass formula in its operator form, to be
RT-invariant within the framework of the present theory.

10 G, A. Baker, Jr., Phys. Rev. 103, 1119 (1956).
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= GusNes

—1=

i = g,

(15)

ninh e T e
-1 -1 - -

= Gaulfey " FaaGimMaly *°° TiWm ",

(u,v,a,ﬂ,'i,j, e =1,2,3, - ,’I'L).

Associated with g and g™, we have the unitary op-
erators o, and o] = (o)t such that

7 = (gn) = ayma;’,
67?15 = (17;': - ’714)
= aa')ha;l = Y

técl@, m].

(16)
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a, = (1 + 75c@),
=1 ~ $50),

where d¢ is an arbitrary real infinitesimal parameter.

In short, it may be said that the BRP applied to
C, gives the symmetry of n-dimensional harmonie
oscillator. Further, it is known'® that the symmetry
of n-dimensional isotropie harmonic oscillator is given
by U{n) or equivalently by SU(n).

Finally, the author thanks Benjamin Lax, Arthur
J. Freeman, Norman Horing, and Joshus Zak for
their cooperation, profitable discussions and for their
patience, and particularly to Professor Joshua Zak
whose comments have been essential in making this
paper possible. He is especially indebted to Professor
Max Born for his continued encouragement. He is
infinitely indebted to his wife, Shin—Ai.
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It is shown that the conditions B,» = 0, R 2 0, R fRg* = iR, R?"8,%, Ropie = (RprR*™ Y oRop,
in the limit that the scalar R ,gR # vanishes, reproduce the physics of neutrinos. That is, these condi-
tions ensure the existence of a two-component spinor which obeys the Weyl equation and represents

a field of completely polarized neutrinos.

I. INTRODUCTION

HERE have been various attempts in the past

to construct a neutrino theory of light,’ yet none
is generally accepted at the present date. Similarly,
there have been attempts to geometrize neutrinos.”
Wheeler® has drawn attention to the outstanding
problem of geometrodynamics as being the need
for showing that spin-} is “contained” in that theory.
The success of the Rainich “already-unified” field
theory* leads one to suspect that the three fields
of physics, i.e., gravitation, electromagnetism, and
neutrinos, should all be unified. The problem of
particles may pose great difficulties, but one should

1 For example, P. Jordan and R. de L. Kronig, Z. Phys.
100, 569 (1936); M. H. L. Pryce, Proc. Roy. Soc. (London)
A165, 247 (1938).

2 For example, A. Inomata, Bull. Am. Phys. Soc. 9, 86

1964).
¢ 8 J. A, Wheeler, Geomeirodynamics (Academic Press, Inc.,
New York, 1962), p. 1.
* 3. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).

expect from the philosophy of geometrodynamics that
such a simple field as the massless neutrino should
be capable of geometrization. We intend to show that
this can be done in a fairly general way.

Before proceeding, we should remark that our
notation will be the same as that of Wheeler® in his
book. Further, we wish to point out that the essential
steps which enable us to geometrize the neutrino
field were first studied by Whittaker® in 1936, and
his paper will replace a detailed set of references. All
of our manipulations can be understood by referring
to Whittaker or Wheeler, and a detailed bibliography
is given by Wheeler.

II. THE RAINICH THEQRY
In 1925, Rainich* showed that there were a set

of necessary and sufficient conditions that a Rie-

(19; ;3) T. Whittaker, Proc. Roy. Soe. (London) A158, 38
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tions ensure the existence of a two-component spinor which obeys the Weyl equation and represents

a field of completely polarized neutrinos.

I. INTRODUCTION

HERE have been various attempts in the past

to construct a neutrino theory of light,’ yet none
is generally accepted at the present date. Similarly,
there have been attempts to geometrize neutrinos.”
Wheeler® has drawn attention to the outstanding
problem of geometrodynamics as being the need
for showing that spin-} is “contained” in that theory.
The success of the Rainich “already-unified” field
theory* leads one to suspect that the three fields
of physics, i.e., gravitation, electromagnetism, and
neutrinos, should all be unified. The problem of
particles may pose great difficulties, but one should

1 For example, P. Jordan and R. de L. Kronig, Z. Phys.
100, 569 (1936); M. H. L. Pryce, Proc. Roy. Soc. (London)
A165, 247 (1938).

2 For example, A. Inomata, Bull. Am. Phys. Soc. 9, 86

1964).
¢ 8 J. A, Wheeler, Geomeirodynamics (Academic Press, Inc.,
New York, 1962), p. 1.
* 3. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).

expect from the philosophy of geometrodynamics that
such a simple field as the massless neutrino should
be capable of geometrization. We intend to show that
this can be done in a fairly general way.

Before proceeding, we should remark that our
notation will be the same as that of Wheeler® in his
book. Further, we wish to point out that the essential
steps which enable us to geometrize the neutrino
field were first studied by Whittaker® in 1936, and
his paper will replace a detailed set of references. All
of our manipulations can be understood by referring
to Whittaker or Wheeler, and a detailed bibliography
is given by Wheeler.

II. THE RAINICH THEQRY
In 1925, Rainich* showed that there were a set

of necessary and sufficient conditions that a Rie-

(19; ;3) T. Whittaker, Proc. Roy. Soe. (London) A158, 38
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mannian geometry should reproduce the physics of
the Maxwell field without sources. These conditions
are, explicitly in terms of the Riceil tensor R,,,

R, =0, )
R.:R} = iR,.R"gl, @)
Ry 2 0, ®

apy — ayp =0, Y

where the bar denotes covariant differentiation, and
the geometric vector a; is defined by

(RerpT)aﬂ = (_g)}eﬁauvRaﬂﬂR;° (5)

. In the special case of a null Maxwell field, i.e.,
one for which

FuyF”' = O) F“P*F“' = Oy (6)
where *F,, is the dual tensor defined by
*F, = %(_g)*euvaﬁFaﬁ) (7)

the Rainich conditions fail—essentially because ap
is not defined.

It is just this special case which permits a geo-
metric theory of neutrinos, as we shall see presently.

III. NULL ELECTROMAGNETIC FIELD

For the moment, we consider flat space—time in
which we have a null Maxwell field:

FMF‘" = 0, F“'*FM = 0’ (8)

F’"Iv = 01 *lev = 0. (9)

Following Whittaker,” we can easily show that
such a field behaves as an elementary spinor. To

see this, note that F,, has but four independent
real components. If we form

8, = 3(Fu + *F.), (10)
A, = 3F, — *F,), (1)
we see that
Fo=8,+ 4,, (12)
Sa = A, (13)

where “4” means the complex conjugate. The
tensor 8,, has two independent complex components.
Using Whittaker’s results, we have the correspond-
ence

SOI = (P12 — ‘P:, st = _z(ﬂof - (0:): (14)
802 = —1:((03 + ¢§), S31 = _(ﬂof + (03)’ (15)
Soa = - 2¢1§02 ’ Slz = 2i¢1¢2 (1 6)
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between S, and a spinor (¢,¢.). That is, if the spinor
transforms as

Y1 ﬂ": = agy + B¢, @
P2 — ¢; = yo1 + O, (18)
ad — 83 =1 (19)

under Lorentz transformation, then S,, transforms
as a tensor, and conversely.

The decomposition of F,, into S,, and A,, is of
course covariant for proper transformations, so we
have a unique covariant prescription for (¢ip2).

We will in the sequel use two other results due
to Whittaker, which we merely state here. If we
consider

8,8 = 4”8, (20)
we find that
A”8,, = —2D"D, 21
where D* is a vector with components
D’ = lo|* + |eul’, D* = i(pweh — olen), (22)
D' = o0t + ¢%p., D = o]’ — |l (23)
and is a null vector:
D,D* = 0. (24)
Secondly, let us define the vector
H, = ¢,00,/02" — @100,/ 02", (25)
and we then have that
8, D"* = 2D,H", (26)

as is verifiable by direct calculation.

IV. SUFFICIENT CONDITIONS FOR A
NEUTRINO FIELD

Let us now use the relations of the previous sections
to geometrize the neutrino field. Suppose for this
purpose that we have a null Rainich-Riemann geom-
etry. That is, we have

R =0, (27)
RIRY = 0, (28)
Ry > 0. (29)

Then as Wheeler has shown,® the Ricci tensor may
be expressed as

R,, = 2f..f) = 2k.k,, (30)

where k, is a null vector and f,, is a null tensor. The

8 J. A. Wheeler, Ref, 3, p. 247,
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tensor f,, may be expressed in terms of k, and a
unit vector v, by

fm = kuvv - kvvm (31)

with

vk, =0, v, =1. (32

The tensor f,, and the vector v, are not uniquely
determined by Maxwell’s equations. For example

33)

leaves f,, unchanged in its properties. Also Maxwell’s
equations do not generally fix f,,.

Nonetheless, one can express R,, as above, even
if not uniquely so, and that is what we need here.

Now let us suppose that a particular f,, has been
picked to obey Maxwell’s equations, and a par-
ticular v, is chosen. Then f,, can be decomposed as
in the previous section and is null, so we have a
spinor corresponding to f,,. Since f,, obeys Max-
well’s equations, the spinor obeys certain differential
equations.

With f,, expressed in terms of (¢,¢,), we see that
k, is simply proportional to D,, the vector previously
introduced. Now suppose that %, does not vanish.
Then consider the conditions

f,,,,k"lp = 0’ *f,,,lc"“’ — O

v, — vl =0, + A,

(34)

If these conditions should be true, then (p.¢,) obeys
the Weyl equation, as we now show. To see this,
we note that the conditions imply

S,D** =0 (35)
and therefore
H* = 0. (36)
Knowing this latter fact, examine the vector
Q = 1" + ¥*." + H, @7
which vanishes. Explicitly, we have, e.g.,
- (i 42y 2y 00)
Qo = ¢’1(ax1 + 4 Fy e 92°
Ops _ .9z , O¢s | G0y Qﬂ&)
+ ¢2(ax‘ wtartar tad) O

where the quantities in parentheses occur in each
component. The vanishing of €, therefore gives

9o | 91 Opr | O _
T ler "o Ta = O (39)
92 _ .9¢x , O | don _
w T T =0 (40)
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unless both of the following are true:
2§01§02 = Oy (42)

which is not possible unless f,, itself vanishes. Thus,
Maxwell’s equations plus the vanishing of H, ensure
that (¢10,) obeys the Weyl equation. We will later
interpret the vanishing of H,, but here we only
remark that it is a sufficient condition for a neu-
trino field.

V. GEOMATIC CONDITIONS FOR NEUTRINOS

We wish now to consider the purely geometric
conditions

B =0, (1)
RIR} = 1R,.R" 52, @)
Ry 2> 0, ®3

Raﬁlv = (RerpT)leaﬁ: (43)

and show that such a geometry, or rather a subfield
of such a geometry, reproduces neutrino physics.

To see this, note that the algebraic conditions
are the usual ones for a Rainich geometry. The
differential conditions ensure that the gradient of
the complexion vanishes identically, independently
of the value of R ,R**,

a = 0. (44)

Thus the complexion of the field, defined by
= : daf

a j; ag dx”, (45)

is constant everywhere. Even when we go to the
limit

I=R,R*—0

we retain this constant complexion.

Our conditions determine a Maxwell field, just
as in the usual Rainich theory, albeit this “Max-
well field” is of a peculiar kind obeying a set of non-
linear differential equations. In the limit of vanish-
ing I, we have

R, = 2f..f5 = 2Lk,

where f,, obeys Maxwell’s equations.
‘We then consider the tensor @, found as follows:

Qap = f,‘ak“”. (47)
Using the relations

(46)

(30)

fur = kv, — ko, (31)
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v =1, vk =0, kE' =0, (48)
fuk” =0,  fu0" =k, (49)
we readily obtain
Qap = (FuckD1p — fratsk” = —Efuarss (50)
Qur = —1"0afuatss (51)
Qap = 3R1 00 — ifuaf™ = 0. (52)

The first term vanishes by assumption, and the
second term by symmetry as we see by writing f.,
in terms of k,, v, again. Similarly, if we consider

Pap = *fuakulpv (53)

we see that it, too, vanishes. Thus the condition

Rnﬂln = 0’ (54)
which obtains in the limit of vanishing I, gives
fﬂvk"lﬂ = Ov *f,”.k““, =0, (55)

and so ensures that H, should vanish. In turn, the
vanishing of H, leads to the Weyl equation for
(¢102), of course.

Our purely geometric conditions allow us to deter-
mine a geometry in which there is a “Maxwell field”.
Having obtained this geometry, with the complexion
fixed, we may proceed to the limit of a null field
in which neutrino physics is reproduced.

VI. DUALITY ROTATIONS

As is well known, the Maxwell energy tensor,
which is essentially

fna]w: - %fpvf”gur (56)
is invariant under the transformation
foo = fin = fu cOs @ + *f,, 8in @, (57

which is a “duality rotation.””®
Similarly, if we consider the Weyl equation, or,
equivalently, the Lee~Yang neutrino equations’

799 = 0, (58)
¥ =7, (59)

we have invariance for “chirality rotations,”
Y =y (60)

Our present theory shows that the two forms of
“rotation” are equivalent. That is, a chirality rota-
tion of ¥ (which could just as easily be written in
terms of ¢, ¢,) is a duality rotation of f,,. To see
this, note

7 P. Roman, Theory of Elementary Particles (North-Holland
Publishing Company, Amsterdam, 1961), 2nd ed., p. 377.
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R, = 2f..f, = 2k/k,, (61)
where k, may be written as
by = v, (62)
with
¥ = 71y. (63)

Obviously, k, is invariant under chirality rotations.
far, o0 the other hand, can be expressed as a linear
combination of

Wy (64)

i‘;c(’yu'Yv - 'Yv'Yu)'p’ (65)

where ¢° 1s the charge-conjugate spinor. When ¢
is subjected to a chirality rotation, f,, undergoes
a duality rotation, as is easily seen.

Thus, Wheeler’s speculation on the connection
between these two forms of rotation turns out to
have significance.’

VII. THE MEANING OF H,= 0

- 'Yv’Yu) ‘l’c r

We have shown how to specify a Riemannian ge-
ometry to obtain a neutrino field, but this field is
of a particular kind. Our neutrinos obey

(66)

in a suitable Lorentz frame. To interpret this condi-
tion, note that it is satisfied only by

©10,02 — 020,01 = 0

¥2 = CoP1, (67)

where ¢, is coordinate independent.
The general solution of Weyl’s equation we may
write as’

o = 715 2 a(hUBE™™ + bOV(+HDE™™,  (68)

where
[—E + heaik;]U(E) = 0,

are particular solutions.

Taking any particular representation of the Pauli
matrices, we see that we must have two of the
components k; vanishing and one of the sets of
coeflicients a;, b% vanishing.

Thus we conclude that our condition implies the
neutrino field is of a particular polarization type,
traveling in a particular direction. For example, a
particular ¢ satisfying our condition is

(69)
(70)

o = % T a()Ume™" (71)
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with
E = hck3, E = (00]03). (72)

Using this, we may readily calculate the cor-
responding Maxwell tensor, and see that it is the
field of circularly polarized light, as might well be
expected.

VIII. EXISTENCE OF THE LIMITING FIELD

We have shown that, in the limit of vanishing
R.s:R**, we obtain our desired aim, yet the question
remains whether such geometries may exist. That
is, when R,R*® vanishes, we have

R =0, @7
RIR; = 0, (28)
Ry > 0, (29)
Raﬁlc = 0, (54)

and one may well question whether our conditions
lead to the identical vanishing of R,, itself.®
Consider, for example, the identity

Rmﬂlar - Raﬁln = RaawR; + Raﬂvr :1 (73)

which, for our geometry, implies sixty algebraic
conditions on R,,. It might well be expected that E,,
must therefore vanish, but such is not the case.

To illustrate that our limiting conditions do not
lead to the vanishing of R,,, we construct an example
of a Riemannian geometry in which our conditions
are true, but R,, is nontrivial.

We suppose a Riemannian geometry which is
conformally flat,’ such that the line element is

ds® = g¢,, dz* dz’ = e'n,, dz* dz’, (74)

where the 7,, is the metric of flat space—time. The
Christoffel symbols in our space are

rjk = 7::14- + Af’ln (75)
where the v{, are the flat-space symbols, and
245, = 8y + v — 9 ginVia (76)

We will denote covariant, derivatives (with respect
t0 g,.) by a slash between indices, while ordinary
derivatives are implied by a comma.

The Ricci tensor for our space is easily calculated
to be

Ry = Y1+ 3 — %g:’k[‘ﬁlulplu — oyl @)

¢ The author is indebted to an anonymous referee for
suggestions which led to the ensuing discussion.

9J. L. Synge, Relativity: The General Theory (North-
Holland Publishing Company, Amsterdam, 1960), p. 317.
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where

Qv = ¢"dia- (78)

¥ is an arbitrary scalar, of course, and we may
restrict it by covariant equations to attain our aim.
We choose the conditions

Vi =0, (79)
Yy = 0. (80)
With our chosen conditions we have
By = i, (81)
R, = 0, (82)

which fulfills our aim. We must then show that a
suitable ¥ may be chosen.

If we use Cartesian coordinates, our demands
upon ¥ are expressed by

Vi = Yoo — V¥ + 3gadud’” =0, (83)
Yy =0, (80)

It is easy to see that we may take
¢! = a2 = a2 + a2’ + a2’ + ax®,  (84)
aa’ =a; + a4+ al —a) =0, (85)

and thereby have indeed a nontrivial geometry in
which R,, is covariant constant as desired.

Perhaps we should emphasize that the example
we have treated, which is a particular solution of
our null field equations, was obtained by restricting
the null vector k, to obey

kplv - kvlu = O: (86)

which was not contained in our original conditions.
It seems reasonable to assume that there may exist
more general solutions of our null-field conditions,
without the restriction mentioned.

At the least, we have shown by explicit counter-
example that R, does not vanish in the limit of
vanishing R,sR**. Our counterexample may be
worthy of further study in its own right.

IX. THE LIMITING PROCESS

We have, in the preceding discussion, used the
concept of a limiting geometry. That is, we have
considered the possibility of constructing a Rie-
mannian geometry corresponding to a nonnull elec-
tromagnetic field, and then passing to the limit of
a null electromagnetic field.

We have not, however, detailed how one might
operationally perform the limiting process in cal-
culation. At the present juncture, we shall not
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attempt to formulate the limiting process explicitly.
We are only certain that such a limiting process is
possible. That is, we know that Riemannian geom-
etries exist wherein our conditions are fulfilled,
whether R,sR** vanishes or not. It is possible, but
highly improbable, that our limiting field cannot be
reached in a continuous manner from the nonnull
field.

We must admit our ignorance of the details of
our limiting process, and hope that further work
may shed some light on this question. On physical
grounds, it would seem improbable that there should
not be a continuous transition from the nonnull
case to the null case.

X. INTERPRETATION OF THE RESULTS

In the preceding, we have referred to our limiting
field as being appropriate for neutrino physics. Al-
ternatively, one might interpret the formalism as a
spinorial description of null electromagnetic fields.®

Since our calculations have all been classical in
scope, the interpretation is not really unique. For
example, there is nothing in our formalism to in-
dicate that Fermi statistics is appropriate for our
limiting field field. Thus, our use of the name “neu-
trino’’ might appear inadvisable.

However, until we fully understand the mechanics
of quantizing gravitational fields, we are forced to
content our selves with calculations which are clas-
sical. The ‘‘classical neutrino” is that field which
obeys Weyl’s equation, whence our chosen appella-
tion.

The resolution of our two apparently conflicting
interpretations is less difficult when one realizes that
our theory is entirely classical. In the classical sense,
we have obtained a theory of null electromagnetic
fields, or of a neutrino field. The two descriptions
are equivalent until quantization is performed. We
are in possession only of field properties, not par-
ticle properties.

In a sense, our theory is a classical “neutrino
theory of light.” Certainly, we have shown how a
field which is a representation of the Lorentz group
corresponding to spin % is contained in Riemannian
geometry, and that was our aim.

Eventually, it is to be hoped, we shall under-
stand how some feature of curved space-time, per-
haps topology, may decide whether Fermi statistics
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for a field of neutrinos or Bose statistics for a field
of coupled neutrinos is obtained.

XI. CONCLUSIONS

We have shown that a particular kind of Rieman-
nian geometry reproduces the physics of a neutrino
field.

To repeat the prescription, we specify our geom-
etry by the conditions

B, =0, (M
R(R; = 1R,.R"53, @)
Ry 2 0, ®

Rogs = (RerM) | aRap- (43)

The Ricei tensor for such a geometry is expressible
in terms of an antisymmetric tensor f,, obeying
Maxwell’s equations. f,, is uniquely determined up
to a constant duality rotation since the complexion
gradient vanishes identically.

We then may go to the limit

R,.R” — 0, (73)

which maintains the constant complexion, and retains
the validity of Maxwell’s equations for the tensor
fus, Which is now null,

fur may be expressed (covariantly in a locally
Lorentz frame) in terms of a spinor which thereby
obeys the Weyl equation. This spinor field is a
completely polarized field of neutrinos, either ‘“par-
ticles” or “antiparticles.”

By a constant chirality rotation, which is still
allowable, the complexion of this neutrino field may
be altered, and in this sense we may say we are
describing a general neutrino field.

We have accomplished the dual aim of our pro-
gram, namely to understand the null Rainich field
and to geometrize the neutrino field. Perhaps further
work may indicate the connection between massive
particles and the Riemann geometry. At any rate,
that must be the purpose of such calculations as
the present one.
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The interaction between two nucleons is assumed to be described by a general Hermitian operator
having certain symmetry and invariance properties.

It is shown that the usual phenomenological potentials employed in dealing with the two-nucleon
system, i.e., nonlocal, velocity-dependent and hard-core, are related by means of unitary trans-
formations of the interaction operator. In addition it is shown that another such transformation of
the total Hamiltonian operator leads to the effective mass formalism. Some numerical results on
phase shifts are compared with most accepted values.

I. INTRODUCTION

'HE two-body problem in nuclear physics is still
far from being solved. In the past, several
phenomenological potentials, and in some cases an
effective mass, have been proposed that reproduce
some of the known features of the system.'™ In
particular, phase shifts given by these potentials
have been compared with the experimental ones
fitted by Breit et al.® Also, some attempts to find
a relationship among the phenomenological poten-
tials have been made.®*°
Our object is to show that all of the potentials
(as well as the effective mass formalism) are related
by means of unitary transformations of the Schro-
dinger equation.
We shall start with the Schrodinger equation in
Dirac’s notation,

T+ = El), (1)

in which U is a nonlocal Dirac operator (that is,
in r-basis, (r| U |r’) is nondiagonal). It will be shown
that this may be transformed into any of the follow-
ing equivalent forms:

T+ Vieear) IShifted> = (T 4+ Viard-core) l) = E]): )]
(T + Vvel depend) I) = El) (3)

* Present address Instituto Politecnico Nacional, Mexico.

1 R. Jastrow, Phys. Rev. 81, 165 (1951).

2 J. Gammel and R. Tha,ler, Phys Rev 107, 291 (1957).

3 M. Razavy, O. Rojo, and J. Levinger, Proc. 1st
Intern. 1 Conf. Nucl. Structure, ngston, 1960, p. 176;
O. Rojo and L. Simmons, Phys. Rev. 125, 273 (1962)

( 9‘%’ Frahn and R. H. Lemmer, Nuovo Cimento 5, 1564
1957).

5 G. Breit, H. Hull, K. Lassila, and K. D. Pyatt, Phys.
Rev. 120, 2227 (1960).

8 M. Moshinsky, Phys. Rev. 106, 117 (1957).

7 J. Gammel and R. Thaler, Progress in Elementary Parti-
cles and Cosmic Rays Physics gNorth-Holland Publishing
Company, Amsterdam, 1960), Vo

8J, S. Bell, Lecture Notes, 1961 Bergen International
School of Physms, Edited by Fronsdal (Benjamin and Com-
pany, New York, 1962).

Green, Phys. Letters 1, 136 (1962).

10 M J. Moravesik, The Two-Nucleon Interaction (Clar-

endon Press, Oxford, England 1963).

[T(M*) + Vieeal]) = E}), (4)
where M* is the effective mass.

In this way it will be demonstrated that velocity-
dependent, nonlocal, and hard-core potentials, as
well as the effective mass formalism, are related by
an unitary transformation. Thus, all of the above
equations have the same physical content, and which
form is chosen is essentially a matter of convenience.

II. OPERATOR FORM OF U

In this section we shall introduce U as a general
nonlocal operator. Then it will be shown by means
of a unitary transformation that a phase shift is
produced in the asymptotic wavefunction, which is
equivalent to the one produced by a hard-core
potential.

We regard the potential as a Hermitian operator
0, with symmetry properties which will be de-
termined in Appendix I."

Let us assume that U is an operator that is
diagonal in the basis u. Suppose that A is a Hermitian
operator so that ¢™*4 is unitary. Assume that 4 is
such that

e—iA.,-Uec'A — V(r) (5)
is a transformation that yields an operator diagonal
in r-basis. Here we need to restriet U to have only
a continuous spectrum. In general, the Schrédinger

equation (1) reads (after solving for U in (5) and
substituting)

(T + Ve ™ )|) = E|), (6)
and from this
(e “Te™ + V(@)|-) = E|-) ™

In (7), we have |-} = ¢ *4|); thus the state vector
is modified by the shift transformation
[y — e ™).

1§, Okubo and R. Marshak, Ann. Phys. (N, Y.) 4. 166
(1958).
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Assume A = P, where P is an operator diagonal
in p-representation. This way we make sure that
U is neither diagonal in p- nor in g-basis (excepting
trivial cases). [Note: the linear case, A = a, + a,p,
makes O local. Thus

vV = et'(au+a,p) V(r)e—i(ao-l-a;p) — eia;pv(r)e—iam.
Then in p-basis we have
@10 [p") = 0@ — pe " = f@' —p")
in r-basis the last expression is written as
& ey = 8@ — ')V — ay).

It is very easy to prove that this is the only velocity-
dependent local potential. It introduces a repulsive
core explicitly.]

With this approximation, we assure that the phys-
ical features of the nuclear potential are achieved.
Thus, making P = a, + a,p + a.p’, and using
the Hermiticity property for P, but not necessarily
the time-reversal property, we have

P' = ot + atp' + a3’
=at+atp+atp’=P. (8

From this, it follows that the a’s must be real
numbers.

For s- waves, in the one-dimensional case, we may
write in p- basis:

@) = @) = e )
=5l 20 = [ — 5 o', (©)
where

9:[6—”,],' = (2,"_)-} feiPz’e—i(ao+ﬂnﬂ+asv’) dp

i(1/4—uu)e—i[(a;+z')’/4ag] .

= const. ¢

F16. 1. Comparison be-
tween the phase shifts
produced by (I) a static
square potential well, with
Vo = 201 MeV, b =
2.2 F; (I1) its transforma-
tion with the shift e~%7 | >,
in first approximation,
using a@; = 0.16 F; (IIT)
Breit’s results.
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Taking for ¥(z) the asymptotic form correspond-
ing to the static potential, sin (kxz -+ &), one arrives
after integration at™

(x| eF]) = ¢!t fm sin [k(x — 2/) + 4]

(@ — 2 | . M] ,
X l:cos 10, + 78in 10, dx

= Csin (kx + 6 — kay). (10)

Observe that {r|e’”|) does not depend on a,; this
is due to the fact that even terms in p do not con-
tribute to the phase shifts. So taking the asymptotic
form of ®(p), i.e. 1[6(p — k) — &(p -+ k)] the Fourier
transform of ¢~***?+**" ¢ _ (p) gives the repulsive
core ka,, as contribution to the phase shift.

We see that the net effect has been the introduc-
tion of a pseudo-phase-shift in the asymptotic wave-
function, equal to ka,. This in turn is equivalent
to that introduced by a repulsive core with radius
a;. A rough approximation to Breit, s values can be
obtained for the phase shifts, using a square-well
for the static part of the potential, satisfying effec-
tive range theory (V, = 30 MeV., b = 1.8 F,,
a, = 0.22 F.; these values give an effective range
ro = 2.07 F., scattering length ¢ = —27.3 F., and
shape-dependent parameter P = +0.005) (Fig. 1).

An alternative treatment of this problem in three
dimensions by S-matrix methods leads to the same
result. (We owe this suggestion to Professor M.
Moshinsky).

II. EFFECTIVE POTENTIAL AND PHASE SHIFTS
FOR SPECIAL VALUES OF U

In this section we will see how velocity-dependent
potentials arise by means of the unitary transforma-
tion, and solve the Schrédinger equation for a
particular case.

Taking terms up to p® to avoid derivatives higher
than second order in Eq. (1), the expression

~-iPyr iP o n
V= ¢ Ve’ = nE;?:' [PP[-¢ [P, V1]
becomes
V=V + P, V] + &[P[P, V]

= V + aipVp — (ap’V + Vp'a*) 11

(where a = ia} — 1ia,), after taking into account
time-reversal invariance,

12 W. Grobner and N. Hofreiter, Integraltafeln (Springer-
Verlag, Berlin, 1961).
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The real part of Eq. (11) is the velocity-dependent
potential

Viear =

V + aipVp — 36i(0°V + V). (12)
Equation (12) resembles greatly Baker’s formula'?

{ﬁ (@’ + 2pu@)p + p'()] + V(T)}‘If(r) = E¥().

Nevertheless, his u(r) is given now by the static
potential itself, without need of a new function.
Note that here, as in Baker’s work, the correct
formalism results from the fusion of both types of
potentials, p2w+wp2 and pJp, used in previous works.
[Note that in spite of the appearance of the ‘4"’ in
Eq. (11), stays to be Hermitian, because in the
potential W 4 4@, @ is anti—Hermitian. For this
reason the change (16) gives again a real effective
potential.]

This potential V..., is local, since it can be ob-
tained from e ***Ve'*®, and so we consider it as
the zeroth-order approximation.

The Schrédinger equation with this potential U, .
is written, in r-representation, as

"+ [k + 2

wl2J" o, _l_<1+_1>} _
+2{7‘ +J} 2 u;, = 0, (13)

where the effective potential is

Wi = —[M Yoy4t {2" + J}] (14)

with V = =V J(r), and g = MV,/h%a; > 0.
For the case J(r) = exp (—r/r,), Eq. (14) gives

Wt = (VM/B)[—(1 4 3a°)e® + o’e*/x]  (15)

where ¢ = r/r; and o = a,/7,.

We see that using an exponential for the static
part of the potential, we are led to a function that
is the sum of an attractive potential plus a repulsive
Yukawa (Fig. 2). Note the similarity of this graph
with earlier potentials having repulsive cores.

Similar effects may be obtained with an attractive
Gaussian function for the static part.

Taking the whole potential, one arrives at

;, + [k'z + MV() J + {2'., _I_ JII} — l(—l;‘—j;__lz]ul

M [V,

+ ia, — Q@Ju; + J'"u,) = 0, (16)

13 3. Baker, Phys. Rev. 128, 1485 (1962).
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woff ]
VM2

0.5+

F1g. 2. Effective potential resulting from the use of an
exponential for the static part, satisfying effective range
theory. We use a; = 04 F, 7 = 0.62 F, and x = 7/r,.

which at first glance looks like an optical potential,
but which by simply changing variables,

ul — vle-ia.(MVn/‘h‘)J
becomes
v+ — Wee — W0+ 1D/, =0 v
where
’ 29 2772
W= Moy 8 (2L gl TS g

(18)

This shows that the complex terms are spurious.
Observe that in Eq. (15) the core value is not
modified by the introduction of the new term, and
only the shape of W, changes for large r.
For the special case of being J a square shape
of range b, the s-phase-shifts 5, of the wavefunction
are given by

e = — kb + tan™ kb/(Ak'b cot k'b + B)  (19)

[from Eq. (13)]. Here A and B are two constants
depending on x and u(r), which is discontinuous
at r = b. So this solution remains ambiguous, be-
cause we get the product of a distribution with a
discontinuous function.

IV. HIGHER-ORDER APPROXIMATIONS TO U

The equation U = ¢*“Ve ** has been solved sup-
posing A # A(r), to exclude the possibility that
= V(r). The zeroth-order U, and first-order ap-
proximation ©U; are obtained by writing A =
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A(p) = P. In the first case P is a linear function
of p.

If A is not equal to P(p), it is still possible to
diagonalize A in p-basis, as follows:

A = e'®Pe 2. (20)
Now, B can not be B(p), since this leads to V;; = V1.
Let us put B = B(r) = V,, then
..OII — eiz"lee"‘lee—ia"lee_‘Vl

— eil";ec'PVe—iP —iVa

iV -V
e = ¢ Ve '

@n

and if V, = const., we have Uy = ;. Using the
formalism of eommutators, one may write

U = T ViVl (73,04
- S i et e I @)

For higher-order approximations, we follow the
same pattern, assuming that B = ¢*°V,(r)e”*°, and
80 on.

For example, with C = P,,

~iP ~iV, —iP iP:y _iVi iP
Vir =€ e "% Ve e e

(23)

If P, is constant, we have Uyy = Uyp. In this way
we expect that the operators

P,=ay+ap+ap + - ;
Vi= b+ b + bir’ + ---

will converge to a constant for ¢ sufficiently large.
If P, = const., the ultimate form of the potential
iS DV = e()(.')-p If V,' = const., it iS V= eU(.')

THARRATS, CERCEAU, AND ROJO

With such expressions for U, Vg, -*° , it is
easy to find new forms for the Schrédinger equation.

The handling of terms like ¢*"*pVpe™*"*, may be
avoided by using a device that we employ later,
when we treat the effective mass.

From (T + Vu1)|) = E|) we have

@ T +0) ) = B |, () = ).

As V, is local and real, (t|-) and (r|) differ only by
a phase; the Schrédinger equation then reads

w4 o ey 4 {f +J"}— Vi
- it jz- D:lul + ’i[(a«z ﬂlhyo J A V{,)ul
+ (292-%—‘[—“ I+ 2V{)u§:l - 0.

By taking

u; = v, exp [ f (a2MV° J + V{) dr:|

— 1, exp [ (“2M Yoy 4 V)]

24)

we have
MYy (4 )

2
LN AR
Finally, our potential permits us to obtain higher-

order approximations, simply by adding new terms
to the static potential, as we summarize here:

(25)

~Wese = MV” J+35 ( + J") (zeroth order),

MV,

MV,

_Wefi =

V. EFFECTIVE MASS

We now show that an effective mass appears
when we use the second approximation to .

If we set A = P(p) in Eq. (7), as T is diagonal
in p-basis, it commutes both with p and A (p), and
¢ *“Te** = T;hence there is not effective mass in
the first approximation.

For the second approximation, we obtain

€ e T’ T + V) |-y =E|-+)

—_ <t g‘ﬂ n) (azM Vo ,)2
ot = 733 J + 2( " + J") + 7 J (first order),

Ez_']: H) (
% J+2<r R Rl

(26)

a.MV, J + Vl) (second order).

where |--) means ¢ ‘“e”*"*|); that is to say, the
wavefunction transformed by the second approxima-
tion.

Now V is local, and

e—:’Pe—-iVlTe‘V;eo'P iP_—iV, v'PTe—s'P iV, iP

=e e e e'e

takes the place of the kinetic energy operator. As
we shall see, apart from this phase shift, the second
approximation gives rise to an effective mass. Let
us call
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e-ﬂ'Pe—-t'VxeiP - S (27)

and define M = m!S; then the kinetic energy term
of the Schridinger equation takes the form

1/Mp* /MY,
The operator S is not Hermitian, but we will use

for the definition of effective mass M * the Hermitian
part of this operator in the following way:

M* = miE(S + SH). (28)
Then
M*i — mi%[e—ie-‘PV,e‘P + e;,—nyl,.‘r]
= m* cos (¢ V')
= m‘}e-if’ CoS VleiP. (29)

In this way we make sure that the eigenvalues
of M* are real. Since 8 is unitary, it comes out
naturally that the eigenvalues of (S + St) are
included in the interval (—1, +1), and M* wil
have any eigenvalue between zero and m. These
are the values that would be obtained in the measure-
ment of the mass.

From the last formula follows an expression an-
alogous to Frahn and Lemmer’s result:

M* = m cos’ (7 V,e'F)

= m/[1 + tan® 7 V&), (30)

and M* < m.

This shows that the effective mass is a nonlocal
operator. In order to arrive at numerical results,
observe that cos® V,(x) is a function that, in good
approximation, may be replaced by cos® (—|z|) (only
the one-dimensional case is to be considered). As
may be shown, this function can have only one
peak in the interval (—®, «), in order to keep
M* less than m.

In p-space, the nondiagonal form of M* is

M*(p’, p/,) = me—i[a:(v'—p”)+a.(n'l—p’”)+"'] (21!")_*
ir .
X f cos” ze TP dy
—3r

(27'_)‘}I\(3)e—i[a:(p’—v”)+a.(1z"-p"')+-"l
=m 3 AU 77 177 77
2T2+ 3@ —p)IT2 - 3@ —p")
The diagonal part of this mass is M* = (}m)lm =
0.621m., in agreement with previously used values.

VI. FINAL REMARKS

In summary, the Schrédinger equation is only
a relationship between operators, in the broadest
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sense of quantum mechanics. The Schrodinger equa-
tion in its most general form is
¢?Tm)e P ) + ¢ V)e ) = El).

This equation can be reduced to (a) effective po-
tential formalism :

T+ Ve) ) =E ), |)=¢""]); (32
(b) effective mass formalism:
@Te™ + V) [y =E ), |-)=e™); (33

where C = B — A 4 1[BA] + #%[B[BA]] + --- .
Equation (33) generalizes the Schrodinger equa-
tion with a mass M* = mle™*°, giving
(/MY [ /(MY + V = E,

and we define effective mass M* as the Hermitian
part of M, i.e., M* = m cos’ C.
Then we have always M* < m.
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APPENDIX

We want now to analyze the symmetry properties
that characterize the potential.

It is most convenient to discuss the symmetry
properties of in r-basis, where we have

O, ) = |V Ir'),
or in terms of the Fourier transform of this,
L-(-)(r) p) = SF[’U(I', l")],:.

(It is clear that the two forms will have the same
symmetry properties.)

Time-reversal invariance U(r, p) =
requires U(r, r') to be real, since

V¥(r, —p)

oD = [ lv i @ | p)

= @0 [ v, 2 ar
and
e, ~p) = [ @l vl d @ | —p)

= 2! f‘o(r, r)e P dr. (A1)
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As a matter of fact, we demand the following
conditions to be satisfied by the operator U:

(a) Hermitian: (A2)
0(r, ') = V¥, 1);

(b) invariant under translations:

r=r1, — I (A3)
(e¢) invariant under Galilean transforms:
P = 3(P1 — P2); (A4)

(d) the particles being indiscernible, must remain
invariant under exchange:

(1) = V(—r1, —1) (A5)

(we have assumed charge invariance to hold).
(e) invariant under time reversal.

THARRATS, CERCEAU, AND ROJO

The following relations, sometimes given as in-
dependent conditions, are consequence of these:

) O, p) = V¥, —p);

This follows from (a), because

0@, —p) = [ 00 @ = 5o, D

@ V@, —r') = V*{, r')
[this follows from (b), by the same argument].

The reality of U(r, r’), together with the given
symmetry conditions, make plain the existence of
the following symmetry axes for the U operator:
the r and r’ axes, and their bisectrices in the hyper-
space of the moduli of r and r'.
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L. INTRODUCTION

AUGUST 1965

N a previous paper' we have treated the quantum-
mechanical problem of finding the ground-state
energy and eigenfunction for three identical par-
ticles bound by attractive interparticle potentials.
In that paper the wavefunction was written in a
special functional form for which we derived an

1 L. Eyges, Phys. Rev. 121, 1744 (1961); hereafter referred
to as II.

integral equation which was equivalent to the
Schrodinger equation. This equation [Eq. (14) of II]
was then solved approximately and, if it must be
said, inelegantly. The numerical results were, how-
ever, in good agreement with the results of other
(variational) calculations.

In the present paper we return to that integral
equation, for which we have now found a much
neater method of solution. Moreover, it is one that
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seems to be generalizable to the four-body and even
N-body problem. We present this method here, and
also compare the results it yields with exact results
that are now available for the one-dimensional prob-
lem with §-function potentials.

For convenience we begin by summarizing some
of the results of II. An essential point in it was the
simultaneous use of three different sets of coordinates
in place of r;, r,, r;, the coordinate vectors of the
particles. These sets were

R, 115, 03), R, T15, 02), (R, I, 01),
where
R=3rn+rn+r
and, for example,
I, =1 —1I,
0s =13 — 3(r + 13,

with the other variables being defined analogously.
In terms of these variables we wrote the wavefunction
¥ of the system (with center-of-mass coordinate R
split off) in the form

Y(ry, 13, T3) = (12, 02)

+ Y1z, 02) + ¥z, 00)- M

We then defined the Fourier transform e(k, %) of
¥(r, o) by

v, o) = ﬁ [ o, e a a

and were led to the basic integral equation for ¢

1
N = BTEF TP

X [[ o) ot e

i, K — 2R TR
TR R gl g @)

Here E = —|E| is the (negative) ground state
energy of the system, V(r) is the interparticle poten-
tial, and

K’ = m |E|/B’, o(r) = mV(@)/F.

Our basie result, Eq. (2), is of course for the three-
body problem in three dimensions. At this point,
however, it is convenient to backtrack somewhat
and consider the analogous problem in one di-
mension. This is because there has appeared® since

2 J. B. McGuire, J. Math. Phys. 5, 622 (1964).
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the writing of II, a solution of a special, but none-
theless very useful, one-dimensional many-body
problem: namely, that in which the interparticle
potentials are attractive 8-functions. By writing the
analog of (2) for this one-dimensional case and
applying our method of solution to it we can compare
the approximate answer with the exact; it goes with-
out saying that this is a most useful check.

For the one-dimensional case everything proceeds
very much as for three dimensions except for some
factors of 27 and the fact that the variables are not
vectors but scalars. In summary: Instead of the
position coordinates z,, x,, £; we introduce a center-
of-mass coordinate X, and z.; and ¥ the one-
dimensional analogs of r;; and e,

Ty = X; — Xy,
Y = 2 — 5z + 2);
we break up the wavefunction ¥(z,, z,, z;) in a way

similar to (1), and define ¢(k, ) by

\b(a:, y) — _21-; ff <p(k, K)ei(k:+xy) dk dK;

we are then led to the one-dimensional analog of (2),
viz.

(k,0) = — :
FOET Tl + W+ K

x [[ u@te®, 6= @

+ ¢(%kl, k! — 2K)(ei:(k'-k—3x/2)
_|_ ei:(—k’—k+3x/2))} dk’ dr. (3)

Here we have found it convenient to separate the
“strength’” s of the potential from its ‘“shape” (ux)
by writing

1)

We shall first treat Eq.(3), with the aim of clarifying
the essential ideas of our viewpoint without the ex-
traneous complication that three dimensions brings.
The formal generalization to three dimensions will
then be simple.

v(z) = su(x).

II. SOLUTION OF THE INTEGRAL EQUATION
IN TERMS OF TWO-BODY FUNCTIONS

In this paper we shall try to solve Eq. (3) in terms
of two-body wavefunctions, i.e., in terms of eigen-
functions of a two-body problem. Let us then con-
sider briefly the problem of the bound state of two
particles, coordinates xz, and z,, attracted by an
interparticle potential, i.e., one which is a function
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only of z; — z,. We shall, for reasons which will be
clear later, take this potential to be one with the
same shape as the interparticle potential in the
actual three-body problem we wish to solve, but of
different strength. That is, referring to Eq. (4), we
shall take the “effective” two-body potential v.s:(z),
whose eigenfunctions we use, to be v, () = 3u(x)
where § is a strength parameter’ at our disposal.

As usual, we shall be interested only in relative
motion in this potential, i.e., in the behavior of the
wavefunction on the relative variable x = 2z, — 7.
We call J/(z) a general wavefunction® in this relative
coordinate, and denote its Fourier transform by &(k).
More specifically we know that there will be a com-
plete set of such two-body wavefunctions, with cor-
responding eigenvalues. In general, there will be a
certain number of negative-energy eigenvalues, which
we call E;, = —|E,|, numbering them from the
lowest (most negative) as the zeroth one. We call the
corresponding momentum-space wavefunctions &, (k).
Then ¢, (k) satisfies the equation (Schrodinger equa-
tion in momentum space)

S = e
Qal(k) = 21r(k3 + Kf)
X [[ w05 @) ai de,

where K? = m|E,|/R’.

In addition to the ¢;(k), the complete set of two-
body eigenfunctions will include a continuum of
eigenfunctions with positive energy eigenvalues.
These eigenfunctions satisfy an equation much like
(5). Now our procedure in prineiple involves the
expansion of the function ¢(k, ) that occurs in (3)
in terms of this complete set of two-body funections;
but in practice, to avoid dealing with the troublesorne
continuum functions, we try to get an adequate re-
presentation in terms of only the bound-state func-
tions. Thus we try an expansion of ¢(k, «) in terms of
only the &;(k), with coeflicients f, which are fune-
tions of x, recognizing that such an expansion cannot
be exact, but that it may well be accurate enough:

ol ) = 3 16l). ©®
If then we put (6) into (2) we get initially
—2r(k* + ¥ + K% 21: fi)@: (k)

= o [ w{[ = rwater fporr-n

. * We ghall generally use the tilde (~) to designate quanti-
ties that refer to the two-body problem.

)

LEONARD EYGES

+ 3“"""“*")} do i

Now we multiply this equation by $*(k) and integrate
with respect to k. On the right-hand side we then

use (5) to get, typically,

f f e dido

= —QRe/D(K — 39° + K)FhE — ).

With this last equation, and the fact of the orthog-
nality of the &;(k), we get after a little algebra

(K + 20 -2 12)
+(1=5) £ 40 [ Rertedn a

- [ 10— 3 + R3S 10 — 200(%)
X [0 — ) + #U=F + W . O

This is the basic set of equations for the unknown
funections f;(x). Since the set is homogeneous it pre-
sumably has solutions only for certain eigenvalues
and eigenfunctions, and it is these we seek. We shall
of course have to truncate Eqs. (7) to solve them,
and will have to hope that one can get a good re-
presentation of ¢(k, «) with only a few of the func-
tions @;. We shall be helped in this convergence
problem by the fact that we have the strength 3
of the two-body function at our disposal, and are
at liberty to choose it as advantageously as possible
for improving convergence. In fact, we shall see
that with a suitable choice of §, one can get a satis-
factory representation of the wavefunction by keep-
ing only the lowest term, with I = 0.

To begin then, we truncate Egs. (7) as severely as
possible and assume that only &, is large. We also
use the fact that @, (k) = @,(—%k) and make a change
of variable in the right-hand side to get the equa-
tion that will occupy us the most.

1) = 5 | otk + o)k + 2)
x[(c+5 +&Jwa,  ®
where

rex iR+ (1-0) [Rleora O
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Now we discuss the most advantageous way of
choosing & It appears that a good choice is that
value that would yield for the two-body problem
the (as yet unknown) three-body energy K. Stated
in other words, the two-body ground state binding
energy K, is a function of 3, or by the same token,
§ is a function of K,, § = §(K,). If now we imagine
a two-body problem for which K, = K, this defines
a special value of g, which we call §(K), and it is this
potential strength that we use in defining the two-
body functions. The reason that this choice of 3
seems to work well appears to be this: We have
found for three dimensions in II that if we set « = 0
in ¢(k, x) and expand the resulting ¢(k, 0) in partial
waves, the S-wave component satisfies an equation
which resembles a two-body equation but for an
“effective”’ patential with a strength appropriate to
the three-body binding energy. Thus the preserip-
tion given above is advantageous for the expansion
of ¢(k, 0) and our hope is that it retains some ad-
vantages for the expansion of ¢(k, «).

III. APPLICATION TO $5-FUNCTION POTENTIALS
IN ONE DIMENSION; COMPARISON WITH
EXACT SOLUTION

As a simple application and test we shall now
apply the results of the preceding section to the
one-dimensional three-body problem with attractive
S-function interparticle potentials. As we have men-
tioned, the exact solution to this problem (and to
the N-body one as well) is known,” so that we
shall be able to compare our approximate three-body
results with the exact one. These exact solutions
are discussed in the Appendix; here we shall simply
quote the results we need.

First, for the two-body problem with interpar-
ticle potential v(zx) = —sé(x), the lowest eigenvalue
K, and the corresponding eigenfunction are

Ko = 3s, (10)
dolk) = CKy/m'E* + KD (11)

For the three-body problem the ground-state eigen-
value K, and the function ¢(k, «) defined by (3) turn
out to be

K =s, (12)
ok, 1) = [(K* + YK + & + £, (13)

It is with these last results that we shall compare
our approximate solution.

We begin by specializing Eq. (8) to the present
case. In accordance with the remarks above we
take @,(k) to be the wavefunction for that two-body
problem for which K, = K. According to (11) then
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alk) = @K /mE* + K7 14

The “effective strength’” parameter 3 is then from
(10) just § = 2K, and the quantity I turns out to be

T = 2K%(1 — s/2K) + .

With these results then, the integral equation (8)
takes the form

fo(") =

8
7(1 + 3«’/8K* — s/2K)
__fk)dk

x| Gh+o + K

We shall not try here to develop very precise methods
for solving (15) but rather shall try only to solve
it accurately enough to show that it is correct, and
to make it plausible that one could do better if
one wished. Our aim will then be merely to get a
good enough answer to compare with the exact solu-
tion, with the thought of checking the general pro-
cedure up to this point. An approximate method
which is suitable to our purpose in that it is both
simple and seems to be reasonably accurate, goes
as follows.* We observe that if we knew the exact
wavefunction we could get a transcendental equa-
tion for the energy by evaluating (15) at some spe-

(15)

cial value; a convenient value is k = 0. Thus with-
out approximation we have
_ 43 * folk) dk
£o(0) = 1 — s/2K) J_. k* + K*

If then we can find a good approximation for f,(x)
we can use it in (15) to find the approximate eigen-
value. We get this approximation by iteration. Given
some zeroth-order approximation f{” (x) we define a
first approximation f{*’(x) by using this under the
integral sign

) = e

(L + 3¢/8K® — 52K)
1Ok dk
X f &+ 20" + K

Of course higher-order approximations can be de-
fined similarly. What then is a good zeroth order
approximation? One possibility emerges when we
recognize that it is fairly clear from Eq. (15) itself
that f,(x) is a function which drops off rather quickly
for large «, probably at least as 1/«*. This suggests

(16)

- that a good zeroth-order iterate is simply a é-func-

tion of «, and it is with this that we begin.

¢ Essentially this method has been used Sprevxouaaly for
the two-body, tl hree~d1men31onal case: E. BE. lpeter Phys.
Rev. 84, 1226 (1951); E . Goldstein,
ibid. 90, "983 (1953).

E. Salpeter and J.
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We put then f{” (x) = &(x) on the right-hand side
of Eq. (15) and get, some irrelevant factors aside,

170 = [A — s/2K + 3¢/8K)EK* + )17, (17)

If now we put this into (15) we get after some
algebraic reduction the transcendental equation for
K as a function of s,

L = 4t (13+4£_ 3v3 )
A+5H6 -4\ 3 @ -

where £ = s/K. Numerically the solution of this
is £ = 1.034. The correct value is of course £ = 1.0.
The agreement seems good enough to imply that
Eq. (15) is basically correct, especially since it is
likely that further iterations would improve this
result.

It is also interesting to compare the exact and
approximate expressions for ¢(k, ). The exact one is
given by Eq. (A12). Putting into it the eigenvalue
K = s, and defining

K =Fk/s,

& = k/s,
it becomes, on normalizing it to unity at the origin,
Pexact = [(1 + K,2)(1 + %Klz + kl2)]"1‘ (18)

The approximate expression ¢,,, is gotten by com-
bining (14) and (17), with the approximate value
for K: K == 0.996s. Again normalizing to unity at the
origin we get

Papprox = [(1 + 1.069’{’2)(1 + 0.801'{’2)

X (1 + 1.069%'%)]7". (19)

Comparing (18) and (19) we see that, e.g., for«’ = 0
the approximate and exact functions differ by a
maximum of 6.99 for k¥’ very large. For ¥’ = 0 and
" very large the exact function goes as 1.33/« * and
the approximate one as 1.169/x™*, i.e., they differ
asymptotically by about 149%,. For ' = k' = }
the exact wavefunction has the value 0.556 and the
approximate one, 0.52, and the corresponding num-
bers for ¥ = «’ = 1 are 0.182 and 0.130. We think
that these results can be considered to represent
satisfactory agreement, for the present purpose.

It is also interesting to compare the exact and
approximate coordinate-space wavefunctions. The
exact wavefunction can be written in any of the
three pairs of coordinates we have been using. For
example, in z,,, y; coordinates it is

\I,exaot = exp [_%S(le2l

+ I%xm + ysl + I‘:lixlz - ya])] (20)

LEONARD EYGES

The approximate wavefunction is of the form

\I,approx = 'P(ley y3) + \b(xw; y2) + \[/(x237 yl)?

where ¢¥(x, y) is defined as the Fourier transform
of ¢(k, ). Using the approximate expression above
for ¢(k, «), we get

tl'umn'cpx(w, y) = e_hlﬂ(e_”vl

@1

= M /),

where
w = (1 — 38)8¢°/¢,
It is rather ironic that we cannot do the final
integral involved in calculating ¥(z, y) exactly [see
Eq. (A11) of the Appendix], so that we cannot
compare ¥...(z, y) and ¢(z, y) directly. What we
can do however, is form ¥,,... from the right-hand
side of (21), and compare with ¥, -If we do this,
and for comparison with (20) put everything into

Zy2, Y3 Variables we finally get

£ = 1.034.

—%s|zxal(e—3|lll| _ ”—le—nlual)

\PaDDrux =€

+ e—%s]y;+%z;,|(e—8 13e1a—3val -1 —ul%n.—&u:l)

_#e

+ e—ialus—%:ul(e-al%zu+%v;l -1 —ul%zu*-iv.)

—
The agreement between the exact and approximate
wavefunctions above turns out to be, as one might
expect, about as good in general as the agreement
between the exact and approximate momentum space
functions ¢(k, ).

IV. THE THREE-BODY PROBLEM IN THREE
DIMENSIONS

Now we turn to the three-body problem in three
dimensions. As in one dimension, our aim will not
be to calculate very precise solutions, since at the
present stage we cannot compete with the extensive
computations that exist,”® but rather to get solutions
good enough to give confidence in our general pro-
cedure, and to make sure that nothing anomalous
happens in three dimensions. The three-dimensional
case is of course intrinsically more complicated than
the one-dimensional one, with scalar variables be-
coming vectors. There is however an additional
independent complication: there are no three-di-
mensional potentials with two-body eigenfunctions
even remotely as simple as the é-function eigen-
function in one dimension. To keep things tractable
then we shall have to use approximate two-body
functions, and it is hard to estimate the error they
introduce.

#Y. C. Tang, R. C. Herndon, and E. W, Schmid, Phys.

Rev. 134, B743 (1964).
¢ M. H. Kalos, Phys. Rev. 128, 1791 (1962).
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With these remarks we turn to the three-body
problem itself, that is, to the solution of Eq. (2). As
we have indicated, our procedure will be essentially
the same as for the one-dimensional case. Thus we
write v(r) = su(r) and define an effective potential
Vore(r) bY voe:(r) = Su(r), in analogy to the one-
dimensional case. Also, we choose the effective § by
the same prescription as for the one-dimensional
case, and call this special value of 3§, §(K). There
will be a complete set of momentum-space eigen-
functions for v, (r); we shall call them ¢,(k), where
the index ! is now a formal one, standing for the
various quantum numbers appropriate to three di-
mensions. The ¢, corresponding to bound states
satisfy

H8) = G
x [[ et ax dr. (22)
We expand ¢(k, x) in terms of these
o, ) = T 600
and are led to a set of equations like (7). We truncate

them, retaining only the lowest term and get the
basic equation

2 [k .
T + %Kzgf ‘”ﬁ(i + ")‘”"(k + 5)

X [(k + —’25) + Kﬁ}fo(k) dk,  (23)

folx) =

where

=1 — 2| g2 PNt
r= (1 g(K))[K + [ # a0 dk:|.
The method of approximate solution is much like

that in one dimension. Namely, we first set « = 0
in Eq. (23) to get

2 s
fo(0) = T(®) 5(K)

x [ a(Eawow + npwa. @y

We then use some approximate f,(k) in this integral
equation, to convert it into a transcendental one
which relates the energy eigenvalue to potential
strength.

The basic question then is: What is a good approx-
imation for f,? To get some notion of this we must
have some idea of the general behavior of &,(k).
To be specific, we choose to work with an expo-
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nential interparticle potential since this is one for

which there exist numerical calculations®® to com-

pare with our three-body results, and also because

there are approximate two-body wavefunctions for

it that are relatively tractable. We digress for a

moment then to discuss these two-body functions.
The two-body potential is

o(r) = —se ™

For this potential we shall use the approximate
ground-state wavefunction ,(r) given by Morse
and Feshbach,”

3
bolr) = [g——i@;‘ * 3] Lem -y,

where o and 8 are variational parameters chosen
in a way we shall describe below. The corresponding
radial wavefunction in momentum space is

I | aﬁ(a+6)]*< 11 >
@olk) = - [ (@ — B)z & + K 62 + &) (25)
According to a variational procedure, a fairly ac-

curate relation between potential strength and bind-
ing energy obtains when o« and 8 have the values

a = Ko, /3 = d_l[%(Kod + 1)]*;

which, as Morse and Feshbach show, leads to the
relation

sd® = H{@R.d + D1 + 20 + R},

This result is, by comparison with the correct one,
accurate to within a percent or so from K,d = 0 to
K. = 1. We shall use it only in this range, and
with confidence only for Kd less than unity, since the
assumed @,(k) behaves anomalously® near K.d = 1.

Now we return to Eq. (23). If we imagine (25) put
into it we see that the function ¢%(ik+x)@.(k+3x),
which occurs in the integral on the right-hand side,
is one which (for given k) drops off at large x as
1/«%. Since the contributions to the integral come
from a limited value of k one would then expect
that fo(x) itself drops off about as 1/«°. In short,
fo(x) is a rather sharply peaked function of x which,
as in the one-dimensional case, makes it plausible to
use a d-function as a zeroth-order iterate. If then
we put a é-function into the right-hand side of Eq.
(23) we get for £V (x), the first iterate,

") = [T(K) + #) "eoeoG)E + ). (27)

7P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, New York, 1953),
Vol. 2, p. 1698.

3 It vanishes identically for Kyd = 1, and becomes
progressively inaccurate as Kod increases from unity.

(26)
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In this we have dropped irrelevant normalization constants, and also dropped the complex conjugation
sign on f, since it is real. If now we put (27) into (24) we find after some algebra and simplification that

it reduces to

y:dy

| = e+’
T

v f A+ DA F A F /DA F 7490 —wd +2) + 3D

In this equation,
p=s/5K), v=[1-+ KdI/Kd.

By definition §(K) is that two-body effective poten-
tial strength which would yield eigenvalue K for
the two-body problem. By (26) then it is

§(K)d* = 3{(2Kd + D[1 + 201 + Kd)'T’}.

We have solved Eq. (28) numerically getting as
a final result a relation between potential strength
s and eigenvalue K, or as it turns out a relation
between Kd and sd®. The results are given in Table I
along with what seem to be the quite accurate nu-
merical results due to Kalos.

We add a few remarks on these results. First,
they are rather less accurate than other numerical
results in the literature*'® that have been achieved
with one or another methods, but always with the
help of digital computers. On the other hand, essen-
tially all the work that is involved in our calculation
is set out above, and the only computation necessary
is in the evaluation of the integral in (28). We think
that even with their imprecision, the results are
good enough to lend confidence that the basic ideas
of the method are correct.

It is perhaps worth spelling out the sources of
inaccuracy in these results. There are three such.
First is the approximation involved in the trunca-
tion of the coupled set of equations for f,(x) in which
we keep only the lowest-order one, Eq. (23). Then
there is the further approximation involved in solving
this by the iterative technique given above. Finally
there is the approximation involved in Eq. (23)
itself, in that we have for simplicity used in it the
approximate two-body variational function given by
Eq. (25). We have not yet tried to sort out the
different orders of magnitudes of error implied by
these separate approximations.

TasLE 1. “Energy”’ eigenvalue Kd versus potential “strength”

sd?, for the exponential potential v(r) = — se~r/d.
Kd  Sd*  8d? “Exact”
019 1.72 1.47
042 2.28 1.91
1.00 4.16 3.28

(28)

V. DISCUSSION

The method we have presented, although worked
out in detail for the special cases above, is in fact
applicable to any interparticle potential of finite
range. All one needs to know is the general form
of the two-body eigenfunctions @;(k), and 3(Ko),
the functional dependence of the two-body energy
eigenvalue on potential strength. Equation (8), or
its three-dimensional counterpart which yields the
energy eigenvalue, is then completely specified. Al-
though in one dimension we have calculated only
for 6-function potentials, there is no reason to expect
these potentials to give uniquely good results with
our method; we would expect then that one would
get comparable results (eigenvalue and eigenfunction
accurate to a few percent), for any one-dimensional
potential with a finite range. Similarly, for three
dimensions, one would think that the exponential
potential we have used is a fairly typical one, so
that one would expect results of comparable accuracy
with any of the other short-range ones that one
might use.

We have said nothing about the four and N-body
problems, but it is clear that the general viewpoint
presented here is also applicable to them. For the
four-body problem one has, of course, to introduce
further Jacobi coordinates, but having done that
the decomposition of the wavefunction, and the ex-
pansion in terms of two-body functions with an
appropriate “effective strength” goes much as for
the three-body problem. Similar remarks apply to
the N-body problem. In particular, preliminary re-
sults on the one-dimensional four-body problem with
s-function potentials are encouraging, by comparison
with the exact solution.
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APPENDIX

In this Appendix we derive some of the results
quoted in the paper for the one-dimensional three-
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body problem with é&function potentials. The
Schrédinger equation for it is
( aﬂ 2
'é;f + ax: + )‘I’ + 2s[6(z, — =)
+ 8z — 25) + 8x2 — )] = K% (A1)

with K* = m|E|/h’. As we have mentioned, McGuire®
has shown by raytracing arguments that the solution
of this equation is

v = e-—}n (Jzi=zal+{z1=2s|+[z5—2al)

(A2)

We mention briefly how, apart from ray tracing,
this solution can be verified. First one can trivially
check that it satisfies Eq. (A1) for points away from
the §-function singularities, and has the eigenvalue

K = s. For away from the singularities, say for
the typical region z; < z, < z;, the equation becomes
(&
) S

and ¥ becomes
_ o #(za—21)
¥ =¢" ,

which obviously satisfies Eq. (Al). To complete
this check we must verify that Eq. (A1) is satisfied
when it is integrated through its é-function sin-
gularities. Since both the wavefunction and potential
are symmetric in z,, x,, Zs, it is clear that we need
do this integration through only one of the singular
potentials, say 6(z; — z.), since the other two will
give identical results.

Consider then the singularity at z, — 2z, = 0.
For discussing this we introduce the Jacobi coordi-
nates z, y¥, and X, (dropping for the moment their
usual subscripts)

r=2o; — Zy,
Y=z — 3z, + m),
X = %(xl + xz + xs).

In terms of these, Eq. (Al) becomes (on dropping a
term in 8°/0X* which refers to the center-of-mass
motion and is not of interest)

{— +3 ;’ + s[a(z) + a( + y)

+ a 3 - y)]}\l! = K'T. (A3)

In the z—y plane of these coordinates, the singularities
are along the lines z = 0, x = 3, 3x = —y. These
lines are plotted in Fig. 1.

Now we integrate Eq. (A3) in the z, ¥ plane across
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~ + lz,"f
v)',) '__'(EJ%

Fia. 1. The potential is singular along the three lines
z2=0 4=y /2= —y.

the line z = 0, from (—¢, %) to (¢, ¥o), for some
arbitrary y,. We note that whatever y, we choose,
we can always take e small enough so that the
condition

lel < %uo (A4)
obtains. After this integration, Eq. (A3) becomes
‘I"(_e; yO) - \I"(G; yo)

3 [
+3 f_ ) (5? Y(z, y))y_“ dx

+s f_ ‘_ 8(x)¥(z, yo) dzx

+ s f_ : 6(%: + yo)\Il(:c, Yo) dz

4 s f_: B(g — yo)‘Il(x, Yo) dz
= K f:‘\ll(:c, yo) do.

Most of the terms in this equation vanish in the
limit ¢ — 0. The first integral on the left-hand side,
and that on the right-hand side vanish because
¥(z, y) is continuous along the integration path;
the terms with 6(3z + yo) and 8(3z — y,) in the
integrand vanish because of the condition (A4). We
are thus left with

lim [¥'(—e, o) — ¥'(e, o] = —s¥(0, o)
and it is easy to see that our assumed wavefune-
tion does satisfy this condition. This completes the
verification that the ¥ of Eq. (A2) is a solution
of Eq. (Al).

Although McGuire gives an expression for the
N-body energy, he does not explicitly write down
the N-body wavefunction. It is natural enough,
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however, to guess at the generalization of (A2) to
the N-body case as

¢N — e—}a(lzN~zN_1|+[::N—zN_,l+"'+|z.—znl)

(A5)
On assuming the ordering z; < z, < 3 - -+ < Zy,
we get, on differentiating the N particle Schrédinger
equation,

K? = N(N* — 1)s*/24. (A6)

Moreover, it is easy to verify that the function
(A5) satisfies the conditions got by integrating the
Schréodinger equation across the d-function sing-
ularities so that, in fact, it is a solution, and Eq. (A6)
is its “energy”’ eigenvalue.

Functions as interesting as the wavefunctions ¥
themselves are the ‘“orbitals” ¢ discussed in the
text. These are defined for the three-body problem,
for example, as follows. The wavefunction ¥ satisfies
the general integral equation, which we write in our
slightly abstract notation

¥@) = [ ¥@)® — P @) . (A7)

For the present case, the total potential v, (P) is just
vt(P) = "'3[6(1'1 - xz)

+ 6x, — x5) + 8@ — x3)].
If we imagine (A8) put into (A7), we are led to three
integrals, i.e., to three terms in the wavefunction.
The ¢, orbital is then defined to be that term which
involves the integral over 8(z, — z,), it being under-

stood that both ¥ and Gx are to be expressed in
Z12, Y3 coordinates for this purpose,

Y12(T12, Ya) = —s ff V(x12, ¥3)o(z12)

X Gx(@, — (A9

If then we put into (A7) the expression (A2) for
¥(Z12, ¥s), use the integral representation for the
Green’s function,

Gr(22 —

(A8)

Tisy Yz — Y3) dalz dyj.

Tiz, Ya — Yi)
f 1[k(zu-1n Y +x(va—vs’)]
(27r)2 f K+ % + K

and do the integration over dx},, we are led to

dk dx,

Y12(T12, ya)

- [IJ*

t{k’zia+x (va—ys’) 1 ~Klys'|

%2 3 72 T KZ

dk’ d’ dyl.  (A10)
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As we have pointed out, the subscripts in Eq. (A9)
are really superfluous, since ¢, is the same function
of its variables as, say ¥i; of its variables. Thus it
is convenient to drop all the subseripts in this equa-
tion and to let ¥ and z, y stand, respectively, for
any of the three orbitals and for the corresponding
variables. If we do this in (A10) and do the inte-
gration over k&’ and ¥}, we get

" exp liey — (K* + %) [a]]
ng)i K.

Yz, y) = f_m [kz ¥ KZ](Kz T 3

This last integral seems to be difficult to do, but
happily it is not very important to be able to do it
since as usual we find it more convenient to work
with ¢(k, «), the Fourier transform of ¢(z, ).

[f ei(kz+w) ¢(x’ y) dx dy

If then we go back a step and Fourier transform v,
in its form (A9) we find that all the integrals can
can be done and we get

ok, ©) = [(K* + 3 + )K" + )7
It is interesting to compare this result with the

Fourier transform ®(k, «) of the total wavefunction
¥. We express ¥ in z,,, ys variables

¥ = exp [_%K{lezl
+ 3222 + vs] + 372 — ws]}]
and define

(A11)

ﬂo(k; K) =

(A12)

(A13)

o(k, ©) =f V(@s, Yol T dry dys. (AL4)

If we put the expression (A13) into this, the inte-
grals can be done; but, in faet, it is easier to write

¥ = ¢,(Z12, Ys) + ¥12(T1s, ¥2) + Yos(tas, Y1)

and then use the integral representation (A10) for
Y12, ete. In either event one gets

1 1
Q(k} K) = K2 + %K2 + k2 {K2 + K2
1 1
G RGO

The first term in this last expression is, of course,
nothing more nor less than the Fourier transform of
the ,, orbital. A comparison then of (A1l5) with
(Al12) points up the advantage in simplicity of
dealing with ¢, since ¢ defines the wavefunction
quite as well as does &.
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Under the restriction to a symmetry group whose generators can be linearly expressed in terms of
the generators of the Lorentz group and of an internal symmetry group, we show that charge conser-
vation implies that the symmetry group is a direct product of the Lorentz group and the internal
symmetry group. Only local structure of the groups and their unitary representations are considered.

HE problem of combining relativistic invariance

and internal symmetries has recently been dis-
cussed by several authors.' Since the multiplet
magses are only approximately the same, the only
way of reconciling exact invariance under both the
internal symmetry group and the relativity group
is to require that the elements of the two groups
do not commute in general. Let us assume® that
the full invariance group of the physical (strongly
interacting) system is a Lie group (which has as
subgroups the internal symmetry group, assumed to
be simple, and the inhomogeneous Lorentz group)
which has a Lie algebra A whose elements can be
expressed as a linear combination of the elements
of the Lie algebras of the internal and Lorentz
groups. It can then be shown® that, if a complete
set of commuting generators of the semisimple in-
ternal symmetry algebra S commute with the gen-
erators of the inhomogeneous Lorentz algebra L,
then the algebra A is a direct sum of the algebras
S and L.

In this paper we wish to extend this result to
the case when only a single generator of S commutes
with all elements of L. This framework is of par-
ticular interest since electric charge is conserved in
all known interactions and it is a generator, or
associated with a generator of the internal symmetry
group which we expect to be relativistically in-
variant. We show that as long as we are interested
in unitary representations only a direct sum algebra
results; this is disappointing since there is then no
possible explanation of the mass splittings within

* Supported in part by the United States Atomic Energy
Commission.

1 F. Lurgat and L. Michel, Nuovo Cimento 21, 574 (1961);
Proceedings of the Coral Gables Conference on Symmetry Prin-
ciples at High Energies, edited by B. Xursunoglu and A.
Perlmutter (W. J. Freeman Company, San Francisco, 1964);
A. O. Barut, Nuovo Cimento 32, 234 (1964); B. Kursunoglu,
Phys. Rev. 135, B761 (1964).

( 2 F)ollowing W. D. McGlinn, Phys. Rev. Letters 12, 469
1964).

3 F, Coester, M. Hamermesh, and W, D. McGlinn; Phys.
Rev. 135, B451'(1964); M. E. Mayer, H. J. Schnitzer, E. C. G.
Sudarshan, R. Acharya, and M. Y. Han, Phys. Rev. 136,
B888 (1964). A Beskow and V. Ottoson, Nuovo Cimento 34,
248 (1964).

a multiplet compatible with exact invariance under
the group.

Theorem. Let @ be any generator of S. If @
commutes with every element of L (and if the set
of elements of S and L are closed under commuta-
tion), then every element L, of L can be decomposed
in the form with L, = L 4+ L}, L} being a linear
combination of elements of § and L{ commuting
with every element of S. Further, both L{ and L,
satisfy the same commutation relations as the ele-
ments L, of the Lorentz algebra.

Proof. Since the Lie algebra S is simple, there
exists a Cartan—Weyl basis H;, E, such that

[H:, E.] = rda)E., (28)
[H, H,] =0, (2b)
(Eay Egl = NogEurs, 1@ +7B) #0, (2¢)
(Bo, E_.] = 2 ri(a)H,, (2d)

i

No generality is lost by taking H, to be a multiple
of @ so that

[Hu L] =0. (3)
By hypothesis we can write
[E., L. = ; a(@AB)E; + ; a(@ADH,
+ > a(@aAB)Ls.
B

Hence, if r,(a) £ 0 we deduce

(o, La] = 2. a{@AB)é{ri(@) — r(8)}Es.

8

For those cases where r,(a) = 0, we can use (2¢)
to deduce the general expression

(B., Li = ; aladB)s{r(a) — ri(B)}E,

+ Zm)a(aAm)a{rl(a)}Hm. @
Similarly from (2b) and (3) we deduce
[Hi, L = 3 b04R)8(r(8)1Es

+ 3 bAMH.. ()
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Evaluating the double commutator
[Hl, [an LA]]
= 2. aladB)ry(8)8{ri(a) — ri(8)}E,s

J
using the Jacobi identity, we get the expression

[[Hb Ea]; LA] - [[Hl; LA]: Ea]
= 2 a(adp)ri(@)s{r(a) — r(B))E,

8

+ ; aleAm)ri{a)é{r, ()} H.A
- pZ b(145)8{r.(8)}[(Es, E.]
— 2 b(lAm)ra(a)E,.

Comparing the terms in E, in these two expressions,
we get

; b(IAm)ra(a) = 0. ()

Since (6) is true for all @, and since the r,(a) span
an m-dimensional vector space as a varies over the
allowed range, it follows that

b(lAm) = 0. ™

Two possible cases arise now.
(a) If H, is such that r,(8) ¢ 0 for any B it
follows that®

(H:, L =0

and hence every element of S commutes with every
element of L. Hence the statement of the theorem
is trivially satisfied with

L!=1L,-L;=0.
(b) If there are some E, for which r,(8) = 0 we
have only proved that
[H:, L= Zp: b(1AB)3{r.(8)} Es. ®
But making use of (2b) we can then show
; {0(lAB)yrw(8) — b(mAB)r:(8)} 8{r(8)} Es = O.

This relation entails the existence of numbers g(48),
not necessarily nonzero, such that

b(I4B) = g(AB)ri(B). )

From (4), we can deduce

[[Ecn Eﬁ], LA]
= Z a(BAY)s{r.(8) — ri(M}[E..E,]

4

- 12 a(aA'y)s{r,(a) — rn(M}E;, E,]

E. C. G. SUDARSHAN

which implies
ala+8 A a+B8) = aleda) + a(BAB).

This requires the existence of numbers p(A4l), not
necessarily nonzero, such that

a(eda) = zl:p(Al)rz(a)- (10)
Now consider the quantity
L = Lo + X p(ADH: + 20 g(49)E,. (1)
It is then immediately verified that
[L:, H)]=0. (12)

Consequently, we make use of (4) and (11) to write
[L:; E]= Z e(edgEs + Z e(@Am)H ,.;
J =

we can deduce
; e(adp){ra(@) — ralB)}Es
+ Z ra(@)e(eADH, = 0,
so that
e(aAp) = 0;eladl) = 0.
Hence
[E., L{]=0. 13)

If we now write the commutation relations of the
Lorentz algebra in the form

[LA) LB] = Xc:vfnLc, (14)

we can rewrite it in the form
(L2, L5l — 2 visLe

= [LA - L:, Lg — Lg] - CE’YEB(LC - Lg)-
Since the expression on the left-hand side commutes
with H,, E, while the right-hand side is linear in
them, both sides must identically vanish; this gives
the basic result

L2, L3l = XL, (15)
[L‘L L;] = ;’YEBLCI', (16)
with

This concludes the demonstrations of the theorem.*

4 After this work was completed, the author had the op-
portunity to learn that essentially the same results have been
deduced by V. Ottoson, A. Kihlberg, and J. Nilsson, ‘“In-
ternal and Sﬂace—Time Symmetries,”” Phys. Rev. 137, B658
(1965). See also L. Michel, Phys. Rev. 137, B405 (1965).
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We can deduce an important corollary from this
theorem:

Corollary. In every unitary representation of the
full symmetry algebra, L, must identically vanish;
and hence we get a unitary representation of a
direct sum of L and S only.

This follows since every unitary representation of
the algebra S is the direct sum of irreducible finite
dimensional unitary representations. Consequently,
the quantities L} satisfying (16) have a unitary
representation which is the direct sum of finite di-
mensional unitary representations. But the only such
representations are trivial.®

We now make several remarks:

(1) The restriction to a simple group S can be
easily relaxed to any semisimple group, the only
requirement being that the generator @ must have
nonvanishing “parts” in each of the simple algebras
which oceur in the direct sum decomposition of the
semisimple algebra.

(2) The theorem is equally applicable if the
Lorentz algebra L is replaced by any other Lie
algebra, say the algebra of the Galilei group. In
this case the corollary is no longer applicable since
the Galilei group has nontrivial finite-dimensional
unitary (nonfaithful) representations.

(3) We could interchange the roles of the internal
symmetry algebra and the Lorentz algebra: if we
require that any one element of the homogeneous
Lorentz algebra, say M,,, commute with all elements
of the symmetry algebra, then every element of the
internal symmetry algebra could be expressed in
the form

H 1 = H ll) + H %;
E.=E. +E.,
with H}, E} being linear combinations of the ele-
ments of the Lorentz algebra, such that HY, E,
commute with every element of the Lorentz algebra.®

We can then show these quantities satisfy the
relations

(18)

[Hi, Eh = ™ r (B},
[H{’ H:] =0,
[E;, E’i,,] = 3" ZT;(O!)H{,

1

5 Tt is interesting to point out that Ottoson, XKihlberg,
and Nilsson (Ref. 4) have considered nonunitary representa-
tions of the Lorentz group, relating the nonunitary nature to
the instability of several members of each multiplet.

¢ This result has been deduced by Y. Tomozawa, ‘“Internal
Symn)letry and the Poincaré Group,”’ J. Math. Phys. 6, 656
(1965).
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which generalize the commutation relations (2).

(4) In the demonstration above, H} and E! are
linear combinations of those elements of L which
commute with all elements of S. Hence if we require
that the rotation subalgebra generated by M s, M,,,
M ,; all commute with S, H; and E} must be linear
combinations of the elements of I which are in-
variant under rotations. To see this we note that
the decomposition (18) is unique since if

H, = H, + H, = H’ + H}',
E.=E,+E,=E;+E;,
then
H} — H’ = H — H;
and
ES — B2 = B} — E}

must commute with every element of L but they
are at the same time elements of L. Hence they
belong to the center of L, which is trivial. Hence
H} and E_ are unique and hence must be invariant
under rotations. But the only element of L invariant
under rotations is the Hamiltonian (time translation
generator); consequently the commutator of any
two elements of Hj, E} vanish which implies, by
virtue of (19), that they themselves vanish. Hence
if the elements of S commute with space rotations,
we get only a trivial direct sum structure.

The present work in conjunction with that of
other authors imply the extreme difficulty of con-
structing a purely Lie algebra model of an exact
symmetry involving mass splittings. Any such
scheme would require for its success a Lie algebra
whose elements cannot be expressed as linear sums
of elements of the internal symmetry algebra and
the Lorentz algebra only.

Note added in proof: A definitive theorem in this
connection has been proved in L. S. O’Raifeartaigh,
Phys. Rev. Letters 14, 575 (1965).
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Diffraction by a Cylindrical Cavity*

Yunae Ming CrEN
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The exact solution corresponding to the field produced by a time-harmonic line source in the pres-
ence of a circular cavity of radius a(N < 1) is found and evaluated asymptotically for large ka. Upon
comparing it with the geometric rays and the diffracted rays constructed in Chen, the coefficients,
especially the diffraction coefficients, are thus determined.

1. INTRODUCTION

N the previous investigation of Chen,’ the so-called

geometrical theory of diffraction of Keller®?® is
extended and applied to the problems of diffraction
by a smooth transparent object of any shape. How-
ever, the diffraction coeflicients for the case N < 1
(N = k,/k,, where k, is the propagation constant
of the scatterer and &, is that of the homogeneous
surrounding medium) have not yet been determined.,
The purpose of the present paper is to determine
those diffraction coefficients. To do this, the exact
solution corresponding to the field produced by a
time-harmonic line source in the presence of a
circular cavity of radius a (N < 1) is found and
evaluated asymptotically for large k.a. Upon com-
paring it with the geometric rays and the diffracted
rays constructed by using the geometrical theory
of diffraction in Chen," the coefficients are thus
determined.

2. GENERAL ANALYSIS

The equations satisfied by the field u(r, ©) of a
line source at (ro, 0) in the presence of the circular
cavity (Fig. 2 of I) are given by (2.1)-(2.5). The
unique solution of these equations is given by (2.7)—
(2.10). The integrals of (2.10) can be evaluated by
computing the residues at the simple poles of P,
(2.9). (Figure 1 shows schematically the positions
of the poles of P,.) However, the result obtained
will not give a clear physical interpretation. In order
to exhibit the interesting physical phenomena, we
have to use several legitimate tricks.

* This research is supported by the Purdue Research
Foundation, under XL Grant.

1Y, M. Chen, J. Math. Phys. 5, 820 (1964); hereafter
referred to as I; Eq. (n.m) will indicate the mth equation of
Sec. nin L.

2 J. B. Keller, “A Geometrical Theory of Diffraction”
[{Symposium on Microwave Optics, Eaton Electronics Re-
searcg Laboratory, McGill University, Montreal, Canada
1953)].
¢ 3 J?]B. Keller, J. Opt. Soc. Am. 52, 116 (1962).

k.
A kza\\u kale
\

F16. 1. The integration path ¢’ and the positions of the simple
poles of P, are shown schematically.

3. DIFFRACTED FIELD

We deform the integration path of (2.10) into ¢”
(Fig. 1). Hence

ulr, @) = Z {i f, e“(mz”)(glo — P,3,,) dv

+ > RL+ DRL + ZR:.}, 1)

where R?,, Rl,, and RZ, are the residues obtained
from the simple poles with Re » < —ksa, Re v ~ k.aq,
and Re v > k,a, respectively; 3,, and 3,, are given
by (2.7) and (2.8), respectively.

By using the proper asymptotic forms for those
Bessel functions and Hankel functions in R?,, we
obtain

Ra > uli(r, Q) = ADLL[0° — o)l — a?)] 7t
X exp {ikl[(r2 — o) + (¢ — oY

+ 'iv,(21m + 0 — cos' 2 — cos? 2)}
r To.

+ O[W‘J\r——m} @

where
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_ginf2m\}
flc=6% (—kll)

% {6 a(l — N9 ¥747(q.e8")
[(1 — N — N*(1L + N4 '(q.)

()

6 /L A'(q) 1)’

v = ko + ¢kt + - @)

¢. is a number determined by the following equation:
[1 — (./k:0)']? tan [(k3a® — o0}t

— v, cos ' 0, /0 — 1]
= ae!" (6/k:2)* A" (q.)/ Ag.),

with A(q) being the Airy function, and
N = (i/8rk,)}. (6)

The u2?(r, @) and uw2*(r, Q) respectively represent
the portions of incident wave which hit the upper
and lower surface of the cavity tangentially. They
decay exponentially while they travel along the
interface on the side of medium 1 clockwise an angu-
lar distance [27n 4+ @ — cos™! (a/r) — cos™' (a/7,)]
and counterclockwise an angular distance [27n —
Q — cos™! (a/r) — cos™* (a/r,)], respectively. Finally,
they leave the surface tangentially towards the ob-
serving point (Fig. 4 of I). Upon comparing (2)
with (1.38), we find that D,,, is the diffraction co-
efficient from medium 1 to medium 1 for the mode s.
Similarly, we have

R:u zuﬂ(ﬁ Q) = leZsDZIa[(TZ - Nzaz)

®3)

®)

X (r2 — N%a)]™* exp {ikl [(* — N2}

+ (2 — N%)! — 2¢(1 — NO)Y

+ iﬁs(21rn + © — cos™? Na _ cos™’ Na
To 7o
o [N
+ 2cos N)} + OLkla(l — Nz)], )
where
or\t _,,. 28N _
D12aD21a = (i{;':) e’ [i (1 - N2) %} (8)

5, = koo + G.Gka)le ™ + -0
and §, is determined by the following equation:

6 \!in| €7 A(ge7HT) + 47(3)
N(_) %nr[ . 3 —
PW ) ¢ Le¥r a0 ™) + 4G

= ia[l - (é;)ji

©)

(10)
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. F1g. 2. The integration path ¢’ and the
simple poles of each term of the expande
schematically.

ositions of the
P, are shown

The u2}(r, Q) and u2'(r, Q), respectively, represent
the portions of incident wave which hit the upper and
lower surface of the cavity at the eritical angle of
incidence. They decay exponentially while they travel
along the interface on the side of medium 2 clock-
wise an angular distance [27n + @ — cos™* (Na/r) —
cos™t (Na/r,) + 2 cos™' N] and counterclockwise
an angular distance [2rn — @ — cos™' (Na/r) —
cos™' (Na/ro) + 2 cos™ NJ, respectively. Finally,
they leave the surface at the critical angle of inci-
dence towards the observing point. Upon comparing
(7) with (1.34), we find that D,,, and D,,, are,
respectively, the diffraction coefficients from medium
1 to medium 2 and from medium 2 to medium 1
for the mode s.

Because of 3,, ~ O™ '(»"%)’"] for Re » < —ka,
all of the R, are of exponentially small in comparison
with R, and R2,. Hence R?, can be neglected.

4. GEOMETRIC OPTICS FIELD

The geometric optics field comes from the asymp-
totic evaluation of the integrals appearing in (1)
by saddle-point method. To show this, we must
expand P, into a geometric series (2.11). It is im-
portant to notice that each term of the integrand
of the new representation has no singularity on ¢’
and in the shaded region of Fig. 2. After using the
correct asymtpotic forms for the cylinder functions,
we find that the expressions of the saddle-point equa-
tions are exactly the same as those for the case
N > 1. Finally, we also find that the expressions
of the geometric fields are exactly the same as those
for the case N > 1.

ACKNOWLEDGMENT

The author wishes to express his appreciation to
Professor Joseph B. Keller of NYU for his encourage-
ment.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 6, NUMBER 8 AUGUST 1965

Scalar Invariants of a Rotational System in a Lie Algebra. IL
Casimir Operators
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We consider matrix equations of the form dW/dz = [S, W] where S(2) is a matrix-valued function
of z, embedded in a given semisimple Lie algbra, L. If the set X; is a basis for L, we expand W as

w'X;. We obtain general conditions on an n-index form p;j... such that p = (u'viw*- ..

Dijk...) is &

constant if uf, vi, w", etc., are solutions of the differential equation. It is shown that these forms are
those that determine the vector invariants of the corresponding group.

We also ask what transformations will map any solution of the differential equation onto another,
regardless of the detailed behavior of S(z). It is shown that the transformations that do this involve

these same ;... .

With this identification, we are able to obtain procedures that can be used to calculate at least
the two-index forms, ;. The existence of two-index forms, other than the Killing metric g;; is shown
to depend on the reducibility of the adjoint representation.

Finally, we show that these same forms generate Casimir operators—i.e., operators that commute
with all elements of the algebra, and hence with the group associated with it. The Casimir operator
8o obtained is given explicitly by (pi...X*X/X*. . .), where the set, X, is the basis of the dual algebra.

L. INTRODUCTION

N a previous paper’ we considered matrix equa-
tions of the form

dW/dz = [S, W] = SW — WS, @

where 8 and W are differentiable matrix-valued
functions of z that describe curves in a semisimple
Lie algebra,”™® L, over a field of characteristic O.
We pointed out there the importance of this equa-
tion. In quantum mechanics’ an equation of this
form with ¢ instead of 2, describes the time depend-
ence of the density matrix if S is (1/¢h) times the
Hamiltonian. We also obtain Eq. (1) in coupled
mode theory if we transform to the power density
matrix.

In our previous paper, we defined what we called
the e-forms, which are generated from the structure
constants, ct;, of the algebra by the cyclicly sym-
metric relations

[
Cijkoem = c:"vc;rckt ter o:nu' (2)

(We will use the summation convention throughout.)

1 M. C. Pease, J. Math. Phys. 6, 111( 1965).

2 Morton Hamermesh, GrouevTheory and Its Aé)plication
to Physical Problems (Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1962). .

3P, M., éohn, Lie Groups, Cambridge Tracts in Mathe-
matics and Mathematical Physics, No. 46 (Cambridge Uni-
versity Press, Cambridge, England, 1961).

¢ B, B. Dynkin, “The Structures of Semi-Simple Algebras,”
Usp. Math. Nauk (N. 8.) 2, No. 4 (20), (1947), Am. Math.
Soc. Transl. No. 17 (1950). . .

& Nathan Jacobson, Lie Algebras (Interscience Publishers,
Ine., New York, 1962). .

o A, Messiah, Quantum Mechanics (North-Holland Publish-
ing Company, Amsterdam, 1961), Vol. I, p. 331 ff.

We also defined the g-forms by symmetrization of
the e-forms:

v 9

Gii = €;5 = CiilCiuy
= ;% T €,
= eiien T €iine T+ Cixni T+ Cirin T €inix T insie (3)
We showed, there, that these forms generate con-
servation laws, or scalar invariants, of the system
described by Eq. (1). If U, V, - are solutions of

Eq. (1), which we express on the basis, X;, of the
algebra as

Giik

Giikn

U =X,
V =X, @
etc.,
then
p™ = W' - ey, (5)
or
P = @' - )gis. (6

are forms on the components that are independent of
z. In particular,

p® = u'v'e; = ui”ig-'i )
is the Killing form of U and V, (U, V).

In this paper, we further develop the theory of
these forms. We consider a general linear homog-
enous form of the nth degree, and obtain the con-
dition that it shall be conserved by the system of
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Eq. (1), and so obtain a generalization of the pre-
vious results.

The equations that determine the operators that
generate these forms are those that determine the
vector invariants’ of the group. Hence we are in
fact dealing with the vector invariants.

We then show that these forms can be obtained
by a quite different approach. If we ask what trans-
formations will carry one solution of Eq. (1) into
another, regardless of the detailed behavior of S(z),
we find that we obtain the same operators as are
involved in the conservation laws. To obtain the
higher-order operators, we replace W, in Eq. (1),
by a matrix valued function that is the direct product
of solutions of Eq. (1). We obtain a differential
equation that is the equivalent of Eq. (1) for these
higher-order solutions. We can then ask what trans-
formations of these solutions will lead to a solution,
independent of S(z). We shall find that the trans-
formations that satisfy this condition involve, again,
the same operators as generate conservation laws.

The relation between the conservation laws and
the transformations gives us means for determing
the operators that are involved. The transformations
can be interpreted in two ways. They can be regarded
as transformations of the coefficients in the expan-
sion of W, for example, on the given basis. Or they
can be regarded as transformations of the basis of
W, but not of S(z). Both points of view will be ex-
ploited to develop the operators and to find some of
their properties.

Finally, we shall show that these operators have
still a third significance. The conditions on them are
sufficient to generate Casimir operators® of the group
of which the Lie algebra is the set of infinitesimal
transformations. Thus they serve to characterize
the representations of the group.

II. THE ALGEBRA AND ITS DUAL

Before tackling the problems outlined above, we
need to establish the symbolism we shall use, and
to summarize the underlying concepts.

As in our previous paper, we are considering a
Lie algebra of » X n matrices over a field of char-
acteristic 0, although the results can be applied
equally to the corresponding abstract algebra. We
do, however, assume the algebra to be finite dimen-
sional.

7 H. Weyl, Classical Groups (Princeton University Press,
Princeton, New Jersey, 1946.) . L.

8 G. Racah “Sulla Caratterizzazione delli rappesentazioni
irriducibili dei gruppi semicimplici di Lie’”” Rend. Acad. Lincei
Sci. Fiz. Mat. Nat. 8, 108 (1950).
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We assume that a basis X; has been chosen, so

that the structure constants ¢; defined by
X, X,] = O?ixk 8

are known. These constants are skew-symmetric in
the lower indices and obey the Jacobi identity

C?i = "C‘?n 9)
(10)

An arbitrary element A of the algebra can, then, be
expanded in terms of the basis
A =aX,. (11)

Between two such elements, A and B, we can write
the “Killing form,” or the “scalar product of Cartan,”
as

¢ t ¢
616 T+ 63uCui + GiiCh; = 0.

(A, B) = a'blcloi, = a'dbig,;. (12)

In our previous paper,' we generalized the operators
involved here by defining the e-forms given here in
Eq. (2), so that

€:i = Giiy

Ciik = CiuCiu0iy, €tcC.

The key property of the e-forms was given in Lemma
1, in the previous paper, which states that, with the
e-forms so defined,

¢
€iiCtihver == €iikhees

(13)

We also defined what we called the g-forms by sym-
metrization of the e-forms.

We are here assuming that the algebra L is semi-
simple. By Cartan’s criterion, g;; is then nonsingular,
so that there exists a unique operator ¢*' such that

= Cijkhers »

979 = &i. (14)
The operator ¢*’ is also symmetric.
We now define the dual basis X* by
X' = ¢“X,. (15)
It follows immediately that
X, = g, X' (16)

We can show without difficulty that the set X‘ are
also the basis for a semisimple Lie algebra. Its
structure constants are given by

X, X'] = ¢'X". 17)

If we substitute Eq. (15) in Eq. (17) and compare
Eq. (8), we find that

o' =g"g
This result, however, can be simplified:

gkwcu': .
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Lemma 2. The structure constants of the dual
algebra are given by

it 7

al = g''ci, = g''cis. (18)

This is proven by Lemma 1 [Eq. (13)], and the cyclic
symmetry of the e-forms:

iu_iv

6 = 09" Grulus

979" owr — €unt)
= m ”(ekm evku)
= g'"g“’oﬁ;gwu
= g%c,164 = g'cix.

The alternate form of Eq. (18) is obtained similarly.
Other relations between the normal and dual forms
can be worked out similarly. Those given, however,
are the ones we shall need.

III. CONSERVATION LAWS

We shall begin by considering the conservation
laws of the second degree. If, as before, U and V are
solutions of Eq. (1), which we express as in Eq. (4),
we ask what is the condition on p,; such that the
scalar

p? = uvp; (19)
shall be independent of .

Since S(z) is in the algebra, we can write it also
as S = s'X; and Eq. (1) becomes

dw'/dz = s™w'chn. (20)
Differentiating Eq. (19) and using Eq. (20), we find
that we must have

imn 1

dp® Jdz = s"uchw'pi; + uisTV ek pi; = 0.

Relabeling the dummy indices, this becomes

$"U (Ompei + Omipi) = 0.
We wish this equation to vanish for any s™ and any
initial values of %' and v’. Proving that the coeffi-
cients of S(z) obey the Lipschitz condition, we must
have '

C:nipu -+ G:n,‘pit =0 (21)

for all m, 7, and j.

We note immediately that Eq. (22) holds for
P:ii = §si, 38 May be proven by Lemma 1. On the
other hand, Eq. (22) may also hold for other p.;.
For example, using the realization of the Lorentz
algebra of the previous paper, Eq. (22) holds also for

Dis = Pas = Pas = Puu = Pas = Psg = 1, (22)

M. C. PEASE

which appeared there as one component of g:ju.

We can, now, manipulate Eq. (21) with the skew-
symmetry of the ¢!;, to obtain a sequence of relations:
C;mpu = _crlnjpit
= _G;z‘ptm = c:v‘ptm'

Continuing in this way, we find that

t
CmiPei =

t 3 3
GiiPu = CixPis = CriPij
t t
= GiiPre = CjxPi: (23)

It follows, then, that p,; is either symmetrie, or all
its inner products with the structure contents vanish.
‘We now consider the more general case. We define

(24)

¢
= O;iPjt

< 1 k

p = (u'v S )Diikee

and ask when this is a conservation law of Eq. (1).
Differentiating p™ by Eq. (20) and setting the
derivative equal to zero, we obtain

dp™ /dz = ("Wt W* + - )Piss...
+ W's™eh " - )piik-.
+ @is™we, - )pip...
+ ..
= (S"uW" - ) emPrire-r F OmiDiti--.
+ Omipiiee.. + 000) = 0. (25)

Again, if Eq. (25) is to hold for all possible
s", u', v, ete., we must have

+ Gfr.kp.-u--- + - =0

Again, using Lemma 1, we find that Eq. (26) is
satisfied by e;;4... and by g¢.j... . It is, however, a
much more general relation.

We note, finally, that the proof given establishes
Eq. (26), or Eq. (21), as both a necessary and suf-
ficient condition for the conservation law.

Equation (21) or Eq. (26) may be recognized as
that determining the vector invariants of the group.
That is, p® or p™, from Eq. (19) or Eq (24) are
scalar-valued functions of the vectors u°, v°, etc. We
consider the group of which L is the algebra and ask
what is the condition on p,; or p;;... such that p® or
p™ is invariant if each vector is transformed by the
group. This condition is expressed by Eq. (21) or
(26).

We should note one qualification here. One nor-
mally defines the vector invariants by

Cfm‘puku- + C:m'pukn- (26)

(ut u* * )ik
and obtains the forms of Eq. (19) or (26) by com-



SCALAR INVARIANTS OF

plete polarization of this form. Doing so necessarily
restricts the attention to those ;... which are fully
symmetric in the indices. The development given
here broadens the possibilities to include all forms,
whether symmetric or not.

If pijx... is antisymmetric in any pair of indices,
then the scalar function (u'u’ - -+ p,;...) is identically
zero, and so its conservation is trivial. However, the
scalar function (u'v'w* -+ pi...), where u’, v’, w¥,
etc., are distinct solutions, is not trivial. The state-
ment that it is conserved gives us an invariant rela-
tion between distinet solutions. If, for example, the
various initial conditions on the solutions are such
that this form vanishes, then it remains zero, and
we have, in effect, an invariant orthogonality con-
dition among the solutions.

IV. TRANSFORMATIONS AMONG SOLUTIONS

We now consider another problem which may seem
unrelated but which will turn out to involve the
same operators, p;;... . Again, we shall consider first
the simplest situation—which will lead to p,;—and
then generalize to the higher-order situations.

We ask how we can transform on solution of Eq.
(1) into another with the same S(2), independently
of the detailed form of S(z).

We define p,, so that

= g"p.w° 27)

and require that u‘ be a solution of Eq. (20). We
require, then, that

dv'/dz = §"p., AW’ /dz = $"UChn. (28)
Using Egs. (20) and (27), Eq. (28) becomes
9 PurS" W = S Crun " Pusth’ (29)

By Lemma 2, Eq. (18), the right-hand side of Eq.
(29) can be written

m_iu .7

80 P’ = 8"G  ComP " (30)

by relabeling the dummy indices. This is to be true
for all s and initial w’. Also g** is nonsingular. Hence,
equating Eq. (30) to the left side of Eq. (29), we
find that the necessary and sufficient condition is
that

v
CumPons

which is the same as Eq. (21). The operator p,; that
is involved in Eq. (22) also generates the conserva-
tion law of Eq. (19).

To extend this analysis to the higher-order opera-
tors, we consider the function

M = .X;jk..

v
omnz)uﬂ =

tikes

7 k
m [

. .)(X'.Xixk . )

(W'
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so that M is the direct product of solutions of Eq.
(1).
We find, then, that

dM/dz = (dm**" /i) XX, - - -
= (Wi pwt - )X XX, -)
+ @'s"opw" )X XX, )
+ @v's"wen, )X XX )
or that
' /dz = s"oh,m"M
+ §"0pm™™"
+ s"en,m T 4 e (31)

We consider now Eq. (31) where m‘™'"* may or
may not be the direct product of solutions of Eq. (1).
That is, we have used direct products to obtain the
form of Eq. (31), but now we use Eq. (31) without
restriction.

We consider the transformation

2 = (""" )P wow- M, (32)
and ask what condition on p.,.p.-. uyw... Will agsure
us that n*°""" will satisfy an equation of the form
of Eq. (31).

We should note that we do not require n**°""" to
be of the same degree as m*’* ",
We see that
U dz = (g7 ) Punessee. AMT /2
= (g""g"" ** VDumneeoupe-e{SCmM
+ s'el,m* "} (33)

We want this to equal

sotn T st
= 8¢t (g7"g"  VPuneere
+ 86009 YPane oo
= 8 (g " )P

+ s g™ g ) Dume e (34)

where, in the last step, we have used Lemma 2.

Equating Eq. (34) to Eg. (33), relabeling the
dummy indices, and letting s° be any curve and
m* """ have any initial value, we find that we must
have

s L]
CimPan++ourer T OinDma-up--s

+ et + O:upmn-"sv"'
This is the same as Eq. (26).
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We see, then, that the p-operators satisfying Eqgs.
(21) or (26) not only give us conservation laws of
the system described by Eq. (1), but, when an ap-
propriate number of their indices are raised ag in
Eqgs. (27) or (32), they also give us transformations
among solutions of either Eq. (1) or Eq. (31).

V. THE PROPERTIES OF p;;

The recognition that P; = g‘‘p,, is an operator
that will transform among solutions of Eq. (1)
gives us a useful device for studying the properties
of p;;.

We consider Eq. (20). We can express w° as a
column matrix whose dimensionality equals that
of the algebra. The operator S; = s"c., is, then, a
matrix valued function of z. Likewise, in Eq. (27),
we can write P; = ¢'“p,, as a square matrix.

If, now, we follow through the steps of the pre-
ceding section, we find that for u* = Piw’ to be a
solution, we required that P; shall commute with
any possible S;,

P;S; = SiPi. (35)

Now Eq. (35) must be true for any S; in the alge-
bra. In particular it must be true when S is one of
the basis matrices. If S is Xy, where 7 now has some
particular value, then S; = c{;,,—i.e., is the matrix
whose uvth term is cf,,,. This is a representation of
the Ad operator,

Adxu) = [X(i)y _]

We recall Schur’s lemma that an operator that
commutes with all elements of an irreducible rep-
resentation of a group must be a constant times the
identity. The lemma applies equally to an irreducible
representation of a Lie algebra, since such an algebra
is the tangent space of the group—i.e., its infini-
tesimal transformations.

If, then P; is to be anything but a multiple of the
identity, the representation involved in S; must be
reducible. The extent of the reducibility involved
determines the number of independent forms that
p:; may take. Also, it gives us a means of determin-
ing the p.;.

If the field over which the algebra L is defined is
the field of complex numbers, and if L is simple
(i.e., if L is one of A,, B,, C,, D,, or the five excep-
tional algebras), then the adjoint representation is
necessarily irreducible, and g,; is the only two-index
form. For suppose the representation were reducible;
there would then be a linear vector space that would
be invariant for all the operators Ady,. Because the
field is the complex numbers, this space would neces-

M. C. PEABE

garily be expressible in terms of the basis elements
of the algebra, so that it would be a subspace of the
algebra. Let L, be such a subspace. We would have,
then, that AdxU = V, where X is any element of
L, and U any element of L,, V in L,. Since AdxU =
—AdyX = V, L, would be an ideal of L. Since L
is assumed simple, it does not have a proper ideal.
Hence, the representation is irreducible, and g,; is
the only two-index form admissible.

If the field is not the complex field—if, for ex-
ample, it is the real field—this argument fails since
L, may not be a subspace of L. That this is not a
trivial difficulty with the logic ean be shown by
example. Consider, for example, the realization of
the Lorentz algebra given in our previous paper.
(We do not repeat the details given there, but refer
the reader to that paper.) We have already noted in
Eq. (22), that there does exist a second two-index
form. To see what happens to the P}, we write down
the adjoint representation:

Adz, = {A* 0], Ady, = [A2 0],
0 A, 0 A,
Ady, = [ . 0], Ady, = [0 —A
0 A, ., 0
Adx.=[° ‘Aﬁ], Adx.=[° ‘Aa],
. 0 s 0
where
0 0 0 1
A=0 0 -1|, A, = 0l,
0 1 0 —
(0 —1
A = |1
0 o0
We can find that the spaces
o 4
L = " , L= ° , (36)
ua —1a
ib —ib
L 7c) L~ 6]

where a, b, ¢ are arbitrary complex numbers and are
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invariant for all Adx,. They are not, however, sub-
spaces of the algebra.

We find, in particular, that the representation is
indeed reducible, as may be seen by changing the
basis with the similarity transformation using

T:‘ - {I '&I}‘
d I

The irreducible representations involved are
Ay, A, Ay, sH1A,, H1A,, A,

On the basis of the original X;, we find that any
matrix of the form

P‘-={ ol ,31]
~B8I ol

commutes with all the Ady,. Hence there are two
linearly independent forms possible, the identity and

P;i—..-.-[o IJ.
-1 0

The identity leads to p;; = ¢.;, as always. The
matrix of Eq. (38) leads to the p;; of Eq. (22).

We may note the emergence, in Eq. (38), of a
group of which the conservation laws are one realiza-
tion—in this case the eyclic group of order 4. We
have, then, the somewhat curious situation of a
group that is characteristic of the algebra.

As an alternative method of calculation, we con-~
sider Eq. (1). If we transform to U, according to
Eq. (27), we can write

@7

(38)

U= g"‘p,,iwa; = »'Y;, (39)

where
Y, = gmpw‘xi =P ;:X-' (40)

so that we are now transforming the basis rather
than the coefficients.
We require, then, that

dU/dz = [S, U] = s™uw'X., Y.] = (dw'/d2)Y,. (41)
On the other hand, we also know that
dW/dz = [S, W] = s"w" X, X,] = (dw'/d2)X;. (42)

The coefficients s may take any values in the
field. Also, providing that the coefficients of S obey
the Lipschitz condition, the coefficients w" may take
any values in the field. For Eqs. (41) and (42) to be
simultaneously satisfied for any values of s and
w", it is necessary and sufficient that the expansion
of [X,,, X,] in terms of X; be identical, for any m and
n, with the expansion of [X,,, Y,] in terms of Y,.

ROTATIONAL SYSTEM. II. 1339
Since
X, X\] = C:;mxe:
we require that
Xn; Y] = €Y. 43)

In particular, if X, is a regular element, then it
generates a Cartan subalgebra as the maximum
commuting subalgebra that contains it. It is evident
that the transformation must leave invariant any
Cartan subalgebra.

As an example, we can consider again the realiza-
tion of the Lorentz algebra given in the previous
paper. It is readily seen that Eq. (43) is satisfied if
we set

Yl = Xﬂ YA = ""‘Xh
Y, = X,, Y, = —-X,, (44)
Ya = xe; Yo = “'Xa.

This again leads to the p,; of Eq. (22). We can also
easily establish that the only transformations which
leave the various Cartan subalgebras invariant are
linear combinations of the identity and Eq. (44).
Hence there are no other quadratic conservation
laws.

Presumably, the higher-order operators can be
investigated by similar techniques. We have not
explored this possibility as yet.

VL CASMIR OPERATORS

We shall now show that these same operators
Di-.. generate Casimir operators—i.e., operators that
commute with the group of which the Lie algebra
is the set of infinitesimal transformations. As discus-
sed in the previous paper, we may have started with
a matrix differential equation for the matricant:

dM(z, 2))/dz = SM(z,2,), Mz, 2) =1.  (45)

If S(z) is a curve in the Lie algebra, L, then M(z, z,)
is a set of curves in the corresponding Lie group.
We discussed in that paper, also, how an equation
of this form could be converted to one of the form
of Eq. (1), where W(2) is a curve in the Lie algebra,

We are, then, concerned with operators that com-
mute with the group in which M is embedded. As-
suming that the representation that is involved is
irreducible, Schur’s lemma requires that such an
operator be a constant times the identity. These
operators have been used as a characterization of the
representation.®

We will begin, again, by considering the two-index
operator, p,;, which satisfies Eq. (21), and later
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generalize to higher orders. We consider the operator
C® = p, XK = p,;g™g"XX,. (46)

To show that C*® commutes with the group, it
is sufficient to show that it commutes with any basis
for the Lie algebra of infinitesimal transformations
of the group. We therefore consider

X, €*] = pug™g"(X,, XX,
= pag’ g {[Xi, XX, + XX, X}
= pug ‘g™ {chXX, + LXK}
By Lemma 2, this becomes
[X:, C®1 = pug™g“ci XX, + pug™g-cs XX..

Relabeling the dummy indices in the second term
byu-—s,s—v,v—k k—j,j— u, we find that

[X;, C(2)] = 3“ ’"(cutp:yk + Czkpua)x X

The terms in parentheses vanish by Eq. (21). Hence
Eq. (21) is a sufficient condition for C* to be a
Casimir operator.

In the general case, we let

C™ = (g™g"¢"" - Wpisp.. XXX, 47

Then, since Adx, = [X;,—] is a derivation,
X, C™] = (g™g"g"™ .- Wiene-- { XK, KJX X,

+ X XXX, o XXX, K]+ )

= (g™g"g"™ - Ipimn-. €L XXX,

+ ¢ XXX, - + XXX, o0 )

= (g™ )l + (g X

+ (g™ ek F - i XXX,

M. C. PEASE

Using Lemma 2, this becomes
{(glu k' )C“ + (gm (X1 hw
+ (g:u ke tw ..

: ')C’:.'

')C“ + .’ }pik;....x,.X,X,, e

= (g™g*¢" - )cipernerr + ChDieners
4+ c;ip,.,,,...}XuX.Xw

— (g™ - e Punenr + CiDiene.
+ ppen. ) XX,

when we relabel the indices appropriately.

The terms in the brackets vanish by Eq. (26).
Hence Eq. (26) is sufficient to assure that C™, de-
fined by Eq. (47), is a Casimir operator for the group.

VII. CONCLUSIONS

We have shown, here, that the operators p,; or
Piix--- , defined for a given Lie algebra or group by
Eq. (21) or (26), arise in several different and im-
portant contexts involving the behavior of systems
embedded in the algebra or group. These application
are so very different that it may seem surprising to
find the same operators involved in all of them. How-
ever, the operators are those that generate the vector
invariants of the underlying Lie group, and so are
very intimately connected with the group structure
itself.
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Studies in Perturbation Theory. IX.
Connection Between Various Approaches in the Recent Development—Evaluation of
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The treatment of Schrodinger’s perturbation theory based on the use of a series of inhomogeneous
differential equations of iterative character is briefly surveyed. As an illustration, the method is
used to derive the general expression for the expectation value of the Hamiltonian to any order
which provides an upper bound for the ground-state energy. It is indicated how the well-known
theory for inhomogeneous equations may be utilized also in this special case.

The solution of the Schrodinger equation by means of the partitioning technique and the concept of
reduced resolvents is then treated. It is shown that the expressions obtained are most conveniently
interpreted in terms of inhomogeneous differential equations. A study of the connection with the
first approach reveals that the two methods are essentially equivalent, but also that the use of reduced
resolvents and inverse operators may give an alternative insight in the mathematical structure of
perturbation theory, particularly with respect to the “bracketing theorem’ and the use of power
series expansions with a remainder. In conclusion, it is emphasized that the combined use of the two

methods provides a simpler and more powerful tool than any one of them taken separately.

1. INTRODUCTION

URING the last decade, there has been a con-
siderable amount of attention devoted to the
quantum mechanical perturbation theory and its
practical applications. In the classical days, Schro-
dinger' and Hylleraas® studied perturbation theory
by considering a set of inhomogeneous equations,
and recently this approach has been taken up again
by Dalgarno and others.® This has led to an intense
development of the entire field, and for a survey
of the literature we would like to refer to the recent
reviews by Hirschfelder et al.* and by Hall.’ In this
connection, one hag studied the problem of evaluat-
ing not only the energy in the stationary states but
also other properties by using improved perturbation
technique.
In connection with the nuclear many-body pro-
blem there has been a considerable extension of per~

* This work was supported in part by the National
Aeronautics and Space Administration under Research Grant
No. G-512 with the University of Florida, and in part by
King Gustaf VI Adolf’s 70-Year Fund for Swedish Culture,
Knut and Alice Wallenberg’s Foundation, and by the Aero-
space Research Laboratories, OAR, through the European
Office of Aerospace Research (OAR), U. 8. Air Force under
Contract AF 61(052)-701 with Uppsala University.

1 B, Schrodinger, Ann, Physik 80, 437 (1926).

2 E. A. Hylleraas, Z. Physik 48, 469 (1928); 54, 347 (1930);
65, 209 (1930). .

$ A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London)
A233, 70 (1955); A. Dalgarno, Proc. Phys. Soc. (London)
A69, 784 (1956); A. Dalgarno and A. L. Stewart, Proc. Roy.
Soc. (London) A238, 276 (1956). _

+J. O. Hirschfelder, W. Byers Brown, and S. T. Epstein,
in Advances in Quantum Chemistry, edited by P. O. Lowdin
(Academic Press, Inc., New York, 1964), Vol. 1. .

¢ G. G. Hall, in Advances in Quanium Chemistry, edited by
P.-O. Lowdin (Academic Press, Inc, New York, 1964).

turbation theory based on the concepts of the wave
and reaction operators, and particularly Brueckner®
and his collaborators have contributed to this de-
velopment. Between 1948 and 1951, several authors’
discovered that the so-called ‘‘partitioning tech-
nique” could be used also in the study of perturba-
tion theory, and this approach has been further
developed in a series of papers from the Uppsala
and Florida groups.® Particularly the concepts of
wave and reaction operators have been investigated
in this way.*"*

The method using inhomogeneous differential
equations is first briefly discussed, and it is then
shown how it may be used in connection with the
variation principle to derive the expectation values
of the Hamiltonian H to an arbitrary order. This

¢ K. A, Brueckner, C. A. Levinson, and H. M. Mahmoud,

Phys. Rev. 95, 217 (1954); K. A. Brueckner, sbid. 96, 508
(1954); 97, 1353 (1955); 100, 36 (1955); K. A. Brueckner and
C. A. Levinson, ¢bid. 97, 1344 (1955); H. A. Bethe, sbid. 103,
1353 (1956); J. Goldstone, Proc. Roy. Soc. (London) A239,
267 (1957); H. A, Bethe and J. Goldstone, tbid. A238, 551
(1957); L. 8. Rodberg, Ann, Phys. 2, 199 (1957); to mention
only a selection of the rich literature on this subject.

TH. Kramers, in Studies and Essays [presented to R.
Courant on his 60th birthday (Interscience Publishers, Inc.,
New York 1948)], p. 205; S. Sueoka, J. Phys. Soc. Japan 4,
361 (1949); M. H. L. Pryce, Proc. Phys. Soc. (London) A63,
25 (1950); M. Lax, Phys. Rev. 79, 200A (1950); P.-O. Lowdin,
J. Chem. Phys. 19, 1396 (1951); W. Kohn, J. Chem. Phys. 17,
670 (1949); 8. F. Boys, Proc. Roy. Soc. (London) A201, 125
(1950). See further J. O. Hirschfelder and P.-0. Loéwdin,
Technical Note No. 3 from Uppsala Quantum Chemistry
Group 1957; J. Mol. Phys. 2, 229 (1959); G. Speisman, Phys.
Rev. 107, 1180 (1957); W. H. Young and N. H. March, ¢b7d.
109, 1854 (1958).

8 P.-0. Lowdin, J. Math. Phys. 3, 969, 1171 (1962);
J. Mol. Speetry 10, 12 (1963); 13, 326 (1964).

% P.-0. Lowdin, Rev. Mod. Phys. 35, 702 (1963).
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leads to a series of expressions which provide upper
bounds for the ground-state energy. After a brief
survey of the partitioning technique which reveals
the mathematical structure of perturbation theory
in an explicit way, it is shown that the quantities
involved are most conveniently interpreted in terms
of solutions to inhomogeneous equations. It is
established that the two approaches are completely
equivalent, but also that there are certain formal
mathematical differences which may be utilized as
an advantage, so that the combined use of the two
methods should provide a better and more powerful
tool than anyone of the methods used separately.

2. PERTURBATION THEORY BASED ON THE
USE OF INHOMOGENEOUS EQUATIONS

Schrodinger’s Perturbation Theory

The fundamental problem in perturbation theory
is the solution of the Schrodinger equation ¥ = E¥
for the stationary states of a system in the case
when 3¢ = 3¢, + V. It has often been customary
to introduce the perturbation in the form AV instead
of V and to systematize the eigenfunction ¥ and
the energy E after powers of A, but we will here
instead systematize the solution to the eigenvalue
problem after powers of V:

‘I’=kzosok, E =E, + ;ek- D
Here ¢, is a solution to the unperturbed problem

3Copo = FEyp,. For the sake of simplicity we will
choose the normalization

which simply implies that the higher-order correc-
tions ¢;, ¢s, ¢s, -+- are orthogonal to ¢,. For the
discrete eigenvalues, the final eigenfunction can then
simply be renormalized to unity whenever needed.
The eigenvalue problem has the form
(3 + V)Y = EV. )

Following Schrédinger, one can now substitute the
expansion (1) into (3) and, reorganizing the terms
after powers of V, one obtains the following set
of inhomogeneous equations:

(Eo - Jco)sﬁo = 0,

By — Jco)% =(V - Ex)‘Po,

(Eo - 5co)¢2 = (V - é1)401 — €00,

(Eo - GCo)goa = (V — e1)&“’2 — €1 — €3¢0, (4)

(Eo - 5Co)¢n+1 = V% - );Zo €nt1—-kPk+

PER-OLOV LOWDIN

One can also write this system in the condensed
matrix form
[B° — 3¢,

o @Yo
E, — 3¢, @1
Eo — 3G P2

Eo — 3G [~}
L JL.
r O : 0 ] r(oo—
V - € O &1
= N G))

— €3 V - € 0 P2

—¢3 —e V —e& 0fos

L. . R

The eigenvalue problem (3) is here equivalent with
the solution of a set of inhomogeneous equations.
One of the first to utilize this approach was Hylleraas
in his classical study of this method, and he has
later, several times returned to this problem.

The energy terms ¢ are easily expressed as matrix
elements of the perturbation V. Multiplying equa~
tion (3) by ¢* to the left and integrating over the
entire configuration space one obtains

0

E = Elg, | ¥) = {eo] 3Co + V [¥)
= E, + (4’0! V |‘I’> ®

= Eo + g (%l V l¢k>,

which immediately leads to the relation

€r+1 = (ﬂ"ol V I@k)- (7)

We note that we have here used the normalization
(2). By means of the equation system formed it is
now possible to transfer this expression so that, if
all the functions ¢,, ¢1, <+ , ¢, up through order n
have been determined, one can obtain all energy
terms through order (2n -+ 1). This can be per-
formed by means of certain basic transformation
formulas which will now be derived.
According to (4) we have the general formula

n—1

(Eo - 5(30)% = V‘Pn—l - on €n1901. (8)

In the following, it is convenient to use the abbrevia-
tions

(Om| View = (m| V [n) = Vo;
(om | @) = (m | ).

©
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Multiplying relation (8)to the left by ¢*., and
integrating, one obtains

n—1

- ge,._l(m +110,
(n| Eo — 5 [m + 1) = (n| V |m)
- g €m+1—k<n l k),

where the second relation is obtained from the first by
suitable changes of indices. However, since (£, — 3C)
is an Hermitian operator this gives directly the
equality

(10)

n—1

m4+1Vin-1 — gen_,(m+1|l)

= V) = S eanslb|m), (D

which leads to the basic transformation formula

m|Vipy=(m=+1]Vin—-1)
+ g;o emu1-ilk | M) — jz:é ei{m 4 1| D). (12)

By means of this formula it is now possible to change
the indices in the matrix elements of the perturba-
tion V and relate them to the quantities ¢, and the
matrix elements (k|l). Putting successively m =
0,1, 2 3, --- we obtain a set of relations: '

n—1

OV )y =W VIn—1)~ X edl]D;
AV =elVm-2

- ZZ_; 112 [ ) + &l (7 = 1);
CVim=38Vkh-3)

(13)

n—3 2

- g €,.-z-2<3 l l) + I‘E 63_1;(]0 [n - 2).

=1

Successive use of these formulas leads to the relation
©Viny=®l Vin—p)

- ; ; ns1-s—1{k | D). (14)
By means of (7), we hence obtain
€n = <0| 14 |2n —_ 1)
n n—1
=@ Vin-1)— kZ; 12; eanoni(l | 1),
(15)

€41 = (Ol V l2n)
=@V Iny — kZ; lf; vtk | D),
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which relation shows that, if the contributions to
the wavefunction have been calculated up through
order n, it is possible to calculate the contributions
to the energy up through order 2n + 1). If n =
0,1,2, 3, .-+, one obtains, particularly,

e = (0] V |0),

e = VI)=QaV]|o),

=0 V[2=01V -«

=0 V)=V -2 - «l|l),
6= 0|V |4> = <2| V—eal2) — el | 1)

(16)

—e{(1]2)+ 2| D}

These lower-order formulas are well-known, and
general formulas of the same type as (15) have also
previously been given.'®

In concluding this section we note that Eq. (14)
provides a very useful transformation formula for
the matrix element of V. Putting n = p + ¢, one
gets particularly the relation

|V |Q> = €yeq+1 T ,; ; €psar1-s-1(k | D,

which is of basic importance in the theory. In the
following, we will use this relation to derive the
expectation value of the Hamiltonian for the approx-
imate wavefunctions of various order in Schro-
dinger’s perturbation theory.

(17)

Variation Principle and Upper Bounds to the Energy in
Schrodinger’s Perturbation Theory
In the solution of the Schrédinger equation
J¥r = EV, the Rayleigh-Ritz variation principle
6(3¢) = 0 is of fundamental importance. Let & =
¥ - &6¥ be an approximate eigenfunction and ¥
the exact eigenfunction satisfying the relation

(3c — E)Yr = 0. (18)
By means of this relation, the turnover rule, and

the Hermitian property of the operator (3¢ — E),
one gets immediately

(o[5c — E|®) (3¥]| 3 — F |oW)

(®| ® (P | ® (19
or the relation
(3C)er = (2| 3¢ [B)/(® | ®)
=E + (8%| 3 — E |69)/(® | ®), (20

showing that, if the trial function ® is affected by
an error &V, the expectation value (3¢) is affected
by an error which is quadratic in the same quantity.

10 F, Dupont-Bourdelet, J. Tillien, and J. Guy, J. Phys.
Radium 21, 776 (1960).
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Applied to perturbation theory, this means that if
¥ is of the order (n + 1), then the expectation
value (3¢) is affected by an error of the order (2n-+2).
One can also say that, if the trial function & is
correct through order n, the expectation value (3¢)
will be correct through order (2n + 1).

We will now evaluate the expectation values of
the energy associated with the perturbed wavefunc-
tion of the various orders explicitly. The trial func-
tion of order n is defined by the formula

PER-OLOV LOWDIN

and the associated expectation value is defined by
the relation

gF = (.| % |8,)/(D. | T.). (22)
In the ground state, this quantity provides also an
upper bound for the true eigenvalue E. This follows
from (20) and the fact that the operator (3¢ — E)
is positive-definite.

Substitution of the trial function ®, = ¢,, ®; =
@0 + @1, &2 = @5 + 0, + ¢, - into Eq. (22) and
the use of the relations (16) and (17) leads directly

&, = ;;0 e @D 44 formulas of the type

& =E, + e,

S =FE +e&+tetea— (et el |/Q+0]1), (23)
&f =Eo+€1+€2+€3+54+55

_ 622+ 6ld|D+CID+CIN+@at+AIDFA[D+CIDH+2]2)
1+ D+ 2D+ +2]2) '
showing results in full agreement with the variation i i }": :{:‘ el | D @)
=1 .

principle, since they are correet through the orders
1, 3, and 5, respectively. In order to derive the
general formuls of this type, it is convenient to
start from Eq. (8) in the modified form

@+ V = Enoy = Voo = Vo + 2 oo (29)

Puttingp =0, 1, 2, - - - , m, successively, one obtains
(5Co + V- Eo)sﬁo = V@o:
(5(30 +V "Eo)sm = Vo1 — Voo + €90,

(330 -+ V- Eo)qﬂz = V@z - V@x -+ €200 + e,

3o+ V ~ E)en = Vou — Vouuu + ; 1. (25)

By summation of these relations, we obtain

Kl =

@+ V —E)®, = Vo, + 2,

p=1 1=

1

< €101+ (26)
Multiplying this relation to the left by ®* and using
Eq. (17), one gets

(] 800 + V = Eo |8,)
~Folvm+ ST a1

=0 p=l =

7

zn: 2 i entptr—p—1{k | D)

p=0 k=1 l=1

n
= Z €n+pil +
p=0

p=1 k=0 1=0

In order to proceed, it is convenient to write out
the triple sums explicitly to see how they are con-
structed, and it is then easy to carry out the frans-
formation to the following form:

2n+1

(B, 50 + V — By — 26 |

r=1

n ¥4 n

= 2 X Yanwank ) @)
~ X2 el D
- Xe S S ey @)

P2 B=2n+4+2=r k+le=p

It is instructive to consider the double sums over
the matrix element (k{l) occurring in Eq. (28). These
elements form a quadratic matrix of order n X =,
and the elements having the same sum are arranged
according to Fig. 1.

Formula (28) implies that each quantity e, is mod-
ified by the double sums over the elements (k|I)
taken over the diagonal p = 2n 4 2 — 7 and over
the elements situated to the right of this diagonal.
This means particularly that the lower quantities
¢. have the following coefficients:
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&: O,

& (n|n),

& mlny+@m—1[n)+n|n—1),

e (nin)y+{n—1|n
+@ln—-1)+0—2]n
+n—~1|ln—=1+({n|n—2),

(30)

Similarly, the coefficients for e,,-, is the sum over
all elements in the matrix except for the element
(1|1). Finally the coefficients for €. + €2+, is the
double sum over all elements (k[l) associated with
the full » X n matrix. Introducing the notation

2n

= 2 2 kID,

p=2n+2—r k+il=p

@31

we note that the quantity e48, contains terms of
orders from (2n -+ 2) up through order (2n + r).
Combining Egs. (22) and (28) one has finally

2n+1

2n+1 Zerar
g =H+ 2e¢— —0—,
1+ 2 &1

k.l=1

(32)

in nice agreement with the variation principle, since
the energy is correct through the order (2n 4 1).
This is the formula for the successive expectation
values of the Hamiltonian in Schrodinger’s perturba-
tion theory, and we note that, for the energy of the
ground state of the perturbed system, it gives a
series of convenient upper bounds.

Hylleraas’ Variation Principle

It was pointed out by Hylleraas'' that the in-
dividual energy terms ¢, fulfilled variation principles
which are useful for practical calculations, and he
particularly focuses his attention on the second-
order energy

& =] V| =] V0. (33)

The formula has the drawback that it contains the
exact first-order terms ¢, which may be found by
solving the inhomogeneous equation (E, — 3Cy)¢; =
(V — e, Hylleraas showed, however, that if @,
is an approximate solution to this equation, orthog-
onal to ¢y, then one hag the theorem

@ 3¢ — By |61 + @] V — & oo
+ (‘POI V-ea l‘ﬁl) > €.

1 E. A. Hylleraas, Z. Physik 65, 209 (1930).

(34)
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p= 2 3 4 n+l

<th> <f2d> <ls> L ilnd | e
PR ~ ,
S S > L Kl | e
<> <G> Gls> L., <

<kl = |- o - it

- P
Gil> @2d> @3> L. @) | -2n
e e .

<nhi ) <nf2d> nls> L, SGIL)
P2 ~ - P

Fie. 1. Tllustration of rearrangement of matrix elements
according to Eq. (29).

The left-hand member gives hence an upper bound
to the quantity e,, and we note that the equality
sign holds only when $, = ¢,. A lower bound for
the quantity e has recently also been given by
Prager and Hirschfelder.”” The more detailed treat-
ment of the question of upper and lower bounds
for the quantities ¢ may be found in the broad
survey by Hirschfelder et al.*

Solution of the Inhomogeneous Equations

The approach to perturbation theory outlined here
is based on the solution of a set of inhomogeneous
equations of the type (4), i.e.,

Eo — o) = . (35)

Before trying to solve this equation, it is worth-
while to notice a general property. Multiplying this
relation to the left by ¢% and integrating, one obtains
the auxiliary condition (p.lf) = 0, which is hence
a necessary condition for solubility. It is sometimes
convenient to write the right-hand member in the
form f = f — @o{polf’) with an arbitrary function #’,
since this condition is now automatically fulfilled.
In general it is also requested that the solution ¢
should be orthogonal towards the unperturbed eigen-
function ¢,. If ¢’ is an arbitrary solution to the
inhomogeneous equation (35), one can easily con-
struct a solution satisfying the orthogonality re-
quirement by means of the relation

¢ = ¢ — <P0<S0o Id")-

For a many-particle Hamiltonian, the solution of
the inhomogeneous equation (35) represents a formi-
dable problem, but, there are special cases for which
explicit solutions may be found. The study of those
cases may also give valuable hints for the develop-
ment of a more general theory.

(36)

12§, Prager and J. O. Hirschfelder, J. Chem. Phys. 39,
3289 (1963).
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One-Dimensional Case

Let us first consider a one-dimensional system with
the variable z, the potential energy U(z), and the
unperturbed Hamiltonian

¥ =T + U = (—h*/8x*m)d*/dx* + Ulz).

Instead of the inhomogeneous equation (35), we
will now study the slightly more general equation

(5 - 5C0)¢ = fr (37)

where & is a real parameter. By introducing the
notations Q(z) = 8x*m(& — U)/h* and g = 8x°mf/k’,
relation (37) takes the form

[@°/da” + Q)¢ = g, (38)

where the solution ¢ is subject to the condition that
it should be quadratically integrable and orthogonal
to ¢,, so that (#|g,) = 0. In this connection, it is
feasible to consider also the homogeneous equation

[@°/dz” + Q@)le = 0, (39)

which has two linearly independent solutions, say
w; and w,. The theory of the equations (38) and
(39) is extensively treated in the classical mathe-
matical literature,’® and one has only to apply the
well-known results.

Of fundamental importance is the Wronskian W,
defined by the relations

W(x) = wl(x)wé(x) - wz(x)“’{(x) (40)
= {w(2)}’(d/d2){wo(@) fn(x)}.  (41)

Combining (39) and (40), one obtains W’(z) = 0,
showing that the Wronskian is a constant: W = W,.
The relation W, # 0 is the necessary and sufficient
condition for the linear independence of two solu-
tions,

A nontrivial solution ¢(z) can never have zero-
points of higher order, since the condition ¢(a) =
¢'(@) = O necessarily leads to the trivial solution
o(z) = 0. All zero-points are hence single and, by
means of the form (41) of the Wronskian and Rolle’s
theorem, one can easily show that between two zero-
points to w, there must be at least one zero-point

F1a. 2. Behavior of solutions to
Egs. (38) and (39).

13 See e. g. A. R. Forsyth and W. Jacobsthal, Lehrbuch der
Differentialgleichungen (Frederick Vieweg und Sohn, Bra-
unschweig, Germany, 1912).
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to w;. Using the form (41), one can further easily
express one of the solutions in terms of the other,
) = Wan@) [ {an(®}?dt.  42)
Certain precautions are necessary in defining the
integral, since the integration path cannot pass a
zero-point of w,(z). However, since a zero-point of
w,(z) corresponds to a pole of the second order for
the integrand and one has the general theorem
gS'Z"2 dZ = 0, 43)
the integral in (42) will be meaningful and the result
the same for any complex contour which avoids
the zero-points of w, (z). In the following, the integral
will hence be defined in this way.

Let us now assume that the potential U(z) is
essentially different from zero only in a finite in-
terval. Introducing the notation «* = —8x*m&/h?,
one obtains for x = 4 o the asymptotic solution

(44)

It is now possible to choose the functions «, and
w, 80 that they have the asymptotic behavior e~
and e***, respectively, by requesting w,(+=) = 0
and w,(— =) = 0.

Let us further assume that the funetion g(z) in
the right-hand member of (38) is essentially different
from zero only in a finite interval. This implies that
the general solution ¢ has the same asymptotic
properties as ¢ expressed in (44).

Let us now study the particular solution ¢*
which is characterized by the boundary condition
¢*(— o) = 0. In general this solution will blow

) Ncle-xz + cze-h:z.

up for z = -+ », but one can in principle evaluate
the quotient
. o*@) _
zl—{?:o ws() = O (45)

This means that the function ¢ (z) = ¢*(z) — Gaw.(z)
is a particular solution to the inhomogeneous equa-
tion (39) which satisfies the boundary condition
¢(t =) = 0, necessary for the quadratic integrabil-
ity (see Fig.2). A characteristic feature of the theory
is hence that it uses one of the “irregular” solutions
of the homogeneous equation (39) to construct the
solution ¢ desired in perturbation theory.

The solution of the inhomogeneous equation (38)
can now easily be expressed in terms of w, and w,
by using the standard method of “variation of pa-
rameters.”’* Let us put ¢ = aw, + Bw, with the
auxiliary condition &/w, 4+ f'w, = 0, where a and
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B are two functions of z to be determined. Sub-
stitution into (38) gives o’w] + B'w} = g, which
leads to the equation system

{a’w{ + Blwi = g, (46)
dw + Bw, = 0,
with the solution o/ = —Wjlgw, 8 = Wi'ge,
Hence, one has
o) = ~Ws* [ g@en® de,
47)

8@ = Wi [ o@e® i,
and the well-known solution
4 = 60
=72 [ o@e® - w@e @@ & @9)

Finally one can combine formulas (42) and (48)
and, by using Dirichlet’s theorem, one can derive
the expression

¢(@) = ¢(a)
+o@ [ ooy [ @i a @)

Choosing ¢ =
obtains

6@ =@ [ o7 d [ @@ 60

— o and putting ¢(— ) = 0, one

One can hence solve the inhomogeneous equation
(38) by repeated quadrature, if one knows the
specific solution w,(x) associated with the boundary
condition w,(+ =) = 0 to the homogeneous equa-
tion (39). Our considerations are valid for any value
of the parameter § and, for § = E,, one may replace
w,(z) by the unperturbed eigenfunction ¢y(z).

The spirit of the recent trend®~® in perturbation
theory is that, in the one-dimensional case, one can
solve the system of inhomogeneous equations (4)
by repeated curvature simply by successively putting
=W — &), f = (V= e)er — expo - ete.
into (50). For the ground state, the unperturbed
function ¢, is nodeless and all the integrals can be
evaluated directly,'* whereas, for the excited states,
one has to use complex contours avoiding the poles
or subtract the effect of the poles.® The results

UW. H. Young and N, H, March, Phys. Rev. 109, 1854

(1958).
18 W. Byers Brown and J. O. Hirschfelder, Proc. Nat.
Acad. Sci. U. 8. 50, 399 (1963).
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obtained, so far, have been encouraging, and there
is little question that the general mathematical
methods for treating inhomogeneous equations ren-
der a powerful tool in the practical applications of
perturbation theory.

Three-Dimensional Case

In many three-dimensional problems, one can
separate the variables and obtain one-dimensional
equations of the type treated above. However, even
in the more general case, there is a rich mathematical
literature about the treatment of inhomogeneous
equations which can be consulted. The results are
by no means as simple as in the one-dimensional
case, but it seems as if the study of the system (4)
would still provide one of the most powerful ap-
proaches to perturbation theory. Here we will only
make some brief comments about a particularly
simple case.

Let 3¢ = T + V be the Hamiltonian for a single
particle, and let us choose 3¢, as the Hamiltonian
for a free particle, so that 3¢, = T = (—h*/8x’m)V?.
Introducing the notation k* = 8x*m&/A® for & > 0,
one obtains from (4) inhomogeneous equations of
the type

(V' + )¢ = g, (51)
which have the well-known solutions
_ 1 [ethr
o®) = — [ S 9@ dve. 6D

These are just the integrals which appear in Born’s'®
treatment of scattering theory, only that the bound-
ary conditions are different, and we note the remark-
able success the use of the inhomogeneous equations
has had in this case. For & < 0, one should instead
introduce the notation «* = —8x*m&/k°, and the
solution takes then the form

oP) = — [ 5122 4@ o,

ie., the solution is expressed in terms of so-called
“Yukawa potentials.” In both cases, the proper
choice of ¢, and the treatment of the boundary
conditions is of essential importance. It appears that
the discrete levels and the scattering states to a
large extent can be treated analogously, and the
closer connection ought to be studied in greater
detail. It seems also worthwhile investigating
whether there exist other three-dimensional Ham-
iltonians 3¢, for which the inhomogeneous equations

(53)

1s M. Born, Z. Physik 37, 863; 38, 803 (1926).
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(&8 — 3C)¢ = f have explicit solutions of a similar
degree of simplicity as (53).

3. PARTITIONING TECHNIQUE
Partitioning of Secular Equation

It is feasible to start a study of the partitioning
technique by considering the eigenvalue problem
Jo¥ = EV in matrix form. Let us expand the eigen-
function ¥ in a complete orthonormal basis f =
(fis f2) fa ++-) so that ¥ = D . fuc;, where the
coefficients ¢, form a column vector ¢. Introducing
the matrix H = f73¢f having the elements 3C,; =
{i| 3 |f.) and multiplying the eigenvalue rela-
tion (3¢ — E)fc = 0 to the left by f!, one obtains
fti(3c — E)fc = 0, i.e,,

H — E-1)c =0, (54)

or >, (3¢, — Ebd.)c; = 0. This is the conventional
matrix form of the eigenvalue problem, and the
eigenvalues are determined by the secular equation
det {3C.; — E6,} = 0.

In the partitioning technique, one starts from (54)
but avoids the explicit use of the associated secular
equation. Equation (54) is of the general form of
a system of linear equations in the unknown co-

efficients c¢;:
Mc = 0, (55)

where M = H — FA. Let us now partition the
basis f into two parts a and b, for instance:

f]y fz, f3, f4, 151 fﬁr e (56)
a b

with the corresponding partitioning of the matrix M
and the column veector c:

Maa Mub} , c = [Ca}. (57)
Mba Mbb Cy

M =

The equation system (55) ean now be written in
the form

Maaca + Mabcb = O,
Mbaca + Mbbcb = (.

(58)

Solving ¢, from the second equation, one obtains
cb = _M;;Mbacay (59)

provided that the matrix M7, exists. Substitution
into the first equation (58) leads to an expression
of the form

M., =0, (60)
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where

Mt’m = Maa - MabM;l} bae (61)

Formulas (58)—(61) renders a simple recipe for “de-
coupling” systems of linear equations which is use-
ful also in other connections.

The choice of the two parts (a) and (b) is quite
arbitrary, and if one selectsthe subspace (a) to
consist of a single element, say f,, equation (60)
takes the form M?{,c; = 0, which implies M{, = 0
if ¢, # 0. This is equivalent with the relation

E =3, + Hlb(E'lbb - be)_lex- (62)
The right-hand member defines a function
f(S) = 3¢, + H1b(8‘1bb - be)_lel (63)

in a real or complex variable & with the derivative

f,(g) = _Hlb(g'lbb - be)_szl < 0, (64)

and the eigenvalues E are then represented by the
zero-points of the function y = & — f(8). A closer
investigation® shows that one obtains both the non-
degenerate and the degenerate eigenvalues in this
way. Since y’ = 1 — f'(§) > 1, the equation y = 0
has only single roots, and this implies that the
partitioning technique renders a transformation from
the original to the “reduced” characteristic equation
for the eigenvalues. By using (64), it is further easy
to show that each pair of values § and &, = f(§&)
bracket at least one true eigenvalue E. This “bracket-
ing theorem’ gives us a new possibility to approach
the problem of upper and lower bounds to E, which
will be developed in a forthcoming paper.

Partitioning by Projection Operators

In order to study the connection with the use
of inhomogeneous differential equations in greater
detail, we will now describe the partitioning tech-
nique expressed in terms of operators. Let & be a
real or complex variable, and let ¢ be an arbitrary
reference function such that (p|¢) = 1. Let further
0 = |p){¢| be the projection operator associated
with ¢ and P = 1 — O the projection operator for
the orthogonal complement. They satisfy the funda-
mental relations

0’ = 0,
PP =P,

o' =0,
P =P,

Tr (0) = 1,
OP = PO = 0.

(65)

By means of O and P, one can now easily carry out
the partitioning into the two subspaces a and b.
The key quantity in the matrix treatment described
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aboveisapparently the inverse matrix (§-1,,—H,,) ™},
which in operator theory takes the symbolic form

T = P/(& — 50), (66)

and is called a “reduced resolvent.” More strictly, T'is
defined by the relation 7'=Pla-0+P(§—3)P]™'P,
for arbitrary « # 0. Since 37/da = 0, the operator T
is independent of the value of «, which is an auxiliary
quantity introduced only so that the operator may
properly exist. The operator T fulfills the basic
relations

T0 = 0T = 0,
P(s — 30)T = P.

(67)
(68)

The theory is_based on the use of expressions of
the type

x = T}, (69)

where f is an arbitrary function. From (69) and
(67) follows directly Ox = 0, i.e., {p|x) = 0, which
implies that x will be orthogonal to the reference

function ¢. From (68) follows further
P& — 3)x = Pf, (70)

or
& —30x =1f— el |f+ 5x),

which is indeed an inhomogeneous equation. The
solution of (71) represents hence the most natural
way for evaluating the function x defined by (69),
even if there may be even other possibilities.

In analogy to (59), we will now consider the func-
tion ¢ defined by the relation

¢ = T'Xe,

which is a function of the type (69) for f = 3Ce.
Substitution into (71) gives immediately the in-
homogeneous equation

(8 — )¢ = {3 — (o] 3 [0 + H)o.  (73)

For the discussion of this equation, it is convenient
to introduce the quantities

Ve = o+ ¢ = (1 4+ T3, (74)
& = (o] 3 |0 + ¢) = o] 3 + XTI |p).  (75)

Equation (73) takes then the form (§ — 3C)¢ =
(3¢ — &), i.e., one obtains the following inhomo-
geneous equation:

(B — ¥ = (& — &e. (76)
8, the function ¥g

(71)

(72)

For the special case when §, =
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is hence a solution to the Schrédinger equation and
& = E is the associated eigenvalue.

This result implies that one should study the
function

& = (&) = (o] 3 + 3T l¢)
or

(&) = (el 3¢ + 3¢ ¢ lo), 77

&E— 3
which is completely analogous to (63). According to
(62), it has the derivative

&) = —(olde —L—s e o) = —(6 |4),  (I8)

(8 — 50)
provided that the last integral exists, and, since this
quantity is negative, one has again the ‘‘bracketing
theorem.” In conclusion, we note that, if the equa-
tion y = & — f(8) is solved by the Newton—Raphson
procedure and one starts from the point & = &,
the next approximation is given by the formula

&% = 8 — Yo/¥s, Or
8 =8 — (8 — 8)/(1 + (¢ | #)o). (79)

This value is identical with the expectation value
of 3¢ for the function ¥; defined by (74) for & = &,
Hence relation (79) is equivalent with the variational
expression (20).

In conclusion we note that, since ¢ is orthogonal
to ¢, the function V¥, is subject to the so-called
intermediate normalization

<‘P l‘I’S> =1, (80)

which is valid for the entire spectrum. For the
discrete energy levels, the eigenfunctions can later
be renormalized to unity.

Partitioning in Perturbation Theory

In order to study the connection with perturbation
theory, we will now put 3¢ = 3¢, + V and ¢ = ¢,
where 3ops = Eopo. Since T, = 0, the relations
(74) and (75) will be simplified to the form

‘I,S = (1 + TV)“’O’
81 = Eo + <§00| V + VTV lso()).

(81)
(82)

It is convenient to introduce the wave operator W
and the reaction operator ¢ through the definitions

W=1+TV, (83)
t=V 4+ VIV = VW, (84)

which gives
Vs = Weo, & =Eo+ (ool t o).  (85)
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The operator T = P/(& — 3C) is essentially an
inverse operator and, in this connection, we note
the identity

(A—B)'= A"+ A7'B(A - B,

which by repeated use gives rise to the power series
expansion

(A —B)™" = A7 > (BA™. (87)
k=0

The denominator in 7' can now be divided into

terms A and B in different ways, and we will

particularly consider the two forms

E—3=(E—-03C) —V (88)
= (Eo - 3(30) - (V — & +Eo)- (89)

Expanding T in terms of powers of V, one is led to
the Brillouin-type perturbation theory, whereas ex-
pansion in terms of powers of V' = V — (& — E,)
leads to the Schrodinger-type perturbation theory.
We note that we still have the variable & at our
disposal, and that & and &, bracket an eigenvalue.
Introducing the quantities

To = P/(& — ), R, =P/(E — ), (90)

and using (87), (88), and (89), one obtains the
infinite expansions

T =T, 3 (VI ©1)
=R, }':‘ (V'Ry)". (92)

k=0

The question of the truncation of these expansions
to a finite number of terms with an estimate of the
remainder will be treated in a forthcoming paper.*”
Here we will instead concentrate our interest on
the structure of the separate terms and their evalua-
tion by means of inhomogeneous equations.

Brillouin-Type Perturbation Theory

Substituting expansion (91) into (81) and (82), one
obtains the fundamental formulas in the Brillouin-
type perturbation theory

\I,G = ¢o + TOV¢o + TOVT0V¢0 + .o (93)

= Z (Tov)ksao,

k=0
8 =E +{p| V+ VT,V + VT ,VT,V + --- leo)
=E, + g (Pol V(Tov)k l%"o)- (94)

17 P.-0. Lowdin, Technical Note 120, Uppsala Quantum
Chemigtry Group, June 1964 (unpublished).
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Introducing the notations

Xr = (ToV)kﬂom €41 = <‘Pol 14 le), (95)
one hence has
¥, = E X&» & = E, 4 ; €. (96)
#=0 -

The functions x; are apparently related by the
recursion formula x;., = 7T,Vxs and, substituting
3¢ = 3¢, and f = Vx, into (71), one gets the in-
homogeneous equation

97)

It is thus possible to evaluate the quantities x; and
& occurring in Brillouin’s perturbation theory by
successively solving a series of equations of the type
97) for k = 0,1, 2, --- , starting from x, = ¢o.
This gives the connection desired.

(8 - gco)Xk-n = Vxr — €&+100.

Schrodinger-Type Perturbation Theory

Let us now substitute expansion (92) into (81)
and (82) which gives the relations
Ve = @0 + ROV% + RoV'RoV% + .-
= 3 @V, ©8)
=0

81 = Eo + <§Ool V + VR()V
+ VRDV,ROV + e I‘Po)

=, + Z (ool VBT Lo, 99)

where we have also used the fact that Rop, = 0.
Let us now consider the special value § = E =
Ey + (po] t |¢oy and rearrange the terms in (98)
and (99) after powers of V according to (1), so that

\I/g = g DPis 81 = Eo + ; €k (100)
One obtains directly
¢ = RoVsao,

¢z = Ro(V — e)Ro Ve,
Y3 = Ro(V - E;)Ro(v - Ex)RoV@o - €2R(2)V¢Po (101)

& = {po| V loo), & = (o] VR,V leo),
& = {po] VRo(V — )RV |0,

& = {po| VR(V — )RV — &)B,V |o0)
— elpo] VRIV |eo)

(102)
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The lower-order terms are found by inspection,
whereas the general terms are most easily written
up by using the classification of the partitioning
of the integers. From (101) and (102) follows im-
mediately the recursion relations

= ROV%,
P2 = Ro(V - 61)‘/’1,

Y3 = Ro(V - e1)(03 - GzRosl’n

Pn+1 = Ro{(V - €1)<Pn - ’:Z; €k¢’n+1—k}' (103)
Again, the lower-order relations are immediately
written by inspection, and induction leads then to
the general formula which is easily proven. Use of
(71) for 3¢ = 3y, § = E,, and ¢ = ¢, shows that
the definition x = R,f is equivalent with the in-
homogeneous equation (B, — 3o)x = f — @oleolf)
with the auxiliary condition {¢o|x) = 0. This implies
that the system (103) is completely equivalent with
the system of inhomogeneous equations given in (4):

n+l

E €xPn+1-k)

k=2

(Bo — Hodens1 = (V — e)on — (104)
where the term for & = n -+ 1 in the last sum comes
from the projection operator P in the right-hand
member of (70). It is evident that any formal expres-
sion in B, can be interpreted in terms of solutions
of inhomogeneous differential equations in the op-
erator (F, — 3C,), and vice versa. However, even
if the two approaches are completely equivalent,
many derivations may look at least formally dif-
ferent in the two schemes. By means of (101) and
(102) and the “turn-over rule,” one obtains, e.g.,
for the energies in (102) the following connection
formulas:

= ool V @1} = (@] V loo),
€ = <§01l vV — € |¢l)v (105)
€ = (¢1[ V—eo 1902) - €2<¢1 |¢1>

={e| V — & o) — edon | 1)

By induction, one finds easily the general relations
which are identical with formulas (15) previously
derived. The explicit relations (102) look very neat
and condensed, but the final results are, of course,
the same. Actually, the two derivations are much
more closely parallel than one would think at first
sight.

In conclusion, it should be observed that the con-
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nection with the conventional form of Schridinger’s
perturbation theory is easily established by using
the spectral resolution of the reduced resolvent R,:

O\ O
RO = p — E ‘pk2§¢k

= , 106
Fimie = B —g (109

where the functions ¢} are the eigenfunctions to 3¢,
associated with the eigenvalues. Substitution of (106)
into (101) and (102) leads to the well-known ex-
pressions

Z‘P S‘Pk |4 (002

I

(4} pa Eo ’

= 0 (¢k| V- |<P°)<¢?J VJ@Z
o= 2 e Gy~ B — B) (107
and
€ = <‘Pol 14 l‘Po);

— <¢0| |4 |¢’k><¢k| |4 I‘Pl

B % E, - Ek
e <<Po| | 4 !¢k><¢k| V—a |<P1><¢z| | 4 |<Pk)
i k. 170 (Eo - Ek)(EO z)

: , (108)

If E, is the ground-state energy of the unperturbed
system, one can further from (106) conclude that
R, is a negative-definite operator and derive a
series of inequalities of the form

P
B> 550
— letXenl

><<P1 I
+ Eo — Eg ]

R°>E

& 0 0
s e P& ik
0 k=1 Eo - Eo .E - E

(109)

Using these lower bounds to R,, one can now derive
a series of lower bounds to e.g., ¢, starting with

<¢’0| v |<P0> - <¢Ol |4 |<P0)
E, — E}

(110)

Combining these relations with (34), one has hence
both upper and lower bounds for e. For a more
detailed discussion of these problems for the higher
quantities ¢, we will refer to the review of Hirsch-
felder et al.*
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4. CALCULATION OF OTHER QUANTITIES
THAN THE ENERGY

In quantum theory, the energy plays a dominating
role since it is one of the physical quantities which
are used to characterize the ‘‘stationary states.”
It is well known that, according to the variation
principle, it is comparatively easy to get a good
estimate of the energy, since a wavefunction of
order n leads to an expectation value (20) of order
(2n 4+ 1). A similar principle applies also to the
“constants of motion”, but for all other physical
quantities associated with a stationary state one
has no such tool to rely on. This implies that, if an
arbitrary physical quantity is represented by the
self-adjoint operator F, then the expectation value
(F)., is correct to the same order n as the wave-
funetion, and, in order to obtain a result of the same
accuracy as the energy, it is then necessary to
evaluate the corrections to (F) of the orders n + 1,
n+ 2, .-+, 2n, and (2n + 1). In particular, if one
has a zeroth-order wavefunction available, it is
important to calculate the first-order correction to
(F). In this connection, an ‘“interchange theorem”
established by Dalgarno'® and his coworkers has
proven to be of essential value.*'®

By using the general relation ¥ = Wy, where
W = 1 4 TV is the wave operator (85), it is easy
to write up the exact expression for the expectation
value of F for the stationary state characterized by
the wavefunction ¥:

;o _ P8 ool WEFW |y
F = (F), @D oo WV T

_ (@l F + VIF + FTV + VTFTV |o)
(ol 1+ VIV |go)

Multiplication with the denominator (g, 1 -+
VT®V |go) gives further the implicit formula

(111)

F = {p| F + VTF + FTV

+ VI(F — DTV o),  (112)

which is convenient as a basis for the discussion.
For T, we will now use the expansion (92) for the
particular value 8 = E = E, + D, ¢, i.e,,

o L k
T = Ro Z {(V - Z GZ)RQ}
= Ro + RQ(V hand 61)Ro

+ By(V — &)R(V — )Ry — &Ry + --- . (113)

13 W. Byers Brown and W. J. Meath, Proc. Nat. Acad.
Sci. U. 8. 52, 65 (1964).

PER-OLOV LOWDIN

Substituting (113) into (112) and rearranging the
terms after powers of V, one obtains

Fo = <<P0! F ]@0);
F] == <(Po| VRoF + FR()V [§00>,
F’g = <§00I VRQ(V - €1)R0F + FRo(V - €1)ROV

+ VRO(F - FO)ROV [Q"o) (114)

Using the technique developed in connection with
studying the general terms (101) and (102) in
Schrodinger’s perturbation theory, one can give the
explicit expression for F; of any order. Here we will
now focus the attention on the first-order correction

F, = (ps| VR.F + FR,V |p0). (115)

The fact that the right-hand member is symmetric
in ¥ and F is the background for Dalgarno’s ““inter-
change theorem.” Introducing the function %, =
R.Fy,, ie., the solution to the inhomogeneous
equation

(Eo - 360)’70 = (F - FO)‘pOr

subject to the condition {g,|n,) = 0, one obtains
directly

(116)

Fl = <¢0l 4 |’70> + (’70] 14 I‘Po)- (117)

These formulas are of particular importance for all
one-electron operators F:

F =X R,

i=1

(118)

provided that the unperturbed Hamiltonian has also
been chosen of the same form 3¢, = 2. 5Co(d).
In such a case, the problem (E, — 3Cy)¢, = 0 is
separable and has solutions in the form of Hartree-
products and Slater determinants, and it is then
easy to show that the same applies to the inhomoge-
neous equation (116). For one-electron operators F,
the interchange theorem may hence render con-
siderable simplifications.

In this connection, we note that the combined
use of the reduced resolvent R, and the associated
inhomogeneous equation gives a simple and forceful
tool for treating the problem of F,. The explicit
form of (115) suggests immediately the introduction
of the function 9, = R,F¢, whereas the inhomoge-
neous equation (116) forms a better basis for a study
of the separability property of the differential equa-
tions. The quantity F, has now been successfully
evaluated for a number of cases and, for a survey
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of the current literature, we will refer to the papers
by Hirschfelder et al.* and by Hall.®

Another important problem in this connection is
to find out whether the sum (¥, + F,) may again
be written as an expectation value of F. This happens
for instance, if the unperturbed Hamiltonian 3¢, and
hence ¢, can be chosen in such a way that

F, =0, (119)

and, at the same time, the perturbation V can be
kept small. In atomic theory, one has previously
often used power series expansions in Z™', but one
has now also tried to use expansions in (Z — 8)7,
where § is a shielding constant, in order to get (119)
fulfilled. So far, this problem is not yet fully solved.

The explicit form of F, indicates that it seems
difficult or impossible to generalize the interchange
approach with practical success to the higher-order
corrections of F.

5. DISCUSSION

The purpose of this note is to show the close con-
nection between the various approaches in the recent
studies of perturbation theory based on the use of
inhomogeneous equations and of reduced resolvents.
The strength of the first approach is illustrated by
a derivation of the explicit expression for the expecta-
tion value of 3¢ in the Schrodinger perturbation
theory to any order, which is a quantity of import-
ance in determining upper bounds to the energy.

The resolvent operator technique is based on the
use of inverse operators, but all expressions of the
type x = Rof may be interpreted so that x is the
solution to the inhomogeneous equation

Ey — edx = f = eoleo | D,

subject to the auxiliary condition {po|x) = 0, which
gives immediately the connection with the first

(120)
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approach. However, one may also utilize the special
properties of inverse operators, for instance, formal
rules of the type

(A — B = A"+ A7'B(A — B)™,  (121)
(3/08)A™" = —A'@AJIR)A™",  (122)

which are simple and powerful tools for transforming
the expressions involved. Formula (121) is of import-
tance in deriving perturbation expansions with a
definite remainder, whereas formula (122) is basic
for the derivation of (78) and the “bracketing
theorem,” which provides upper and lower bounds
for the eigenvalues. These problems will be further
discussed in a forthcoming paper.*’

In part of the current literature, there has been
a certain trend to focus the attention solely to the
inhomogeneous differential equations themselves*''®
without any explicit use of inverse operators what-
soever. From our discussion it follows, on the other
hand, that the two approaches are completely equiv-
alent, since they may be transformed into each
other. There is a certain difference connected with
the fact that the mathematical forms look rather
different, but this should be utilized as an advantage.
It is well known that mathematical expressions may
be “suggestive” in various degrees to different
scientists, but, even if this property is partly of
a personal nature depending on the background of
the scientists involved, it is highly important for
the further development of the research. Instead
of developing a theory solely along one line of
approach, it may hence be worthwhile to consider
the alternative mathematical form also of the other
approach in order to get new ideas. Hence it seems
likely that a combination of the two methods dis-
cussed may provide the simplest and most powerful
tool available for treating some of the current
problems in perturbation theory.
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Erratum: On the Construction of a Unitary Matrix with Elements of Given Moduli

Matts Roos
Nordisk Institut for Teoretisk Atomfysik, Copenhagen, Denmark
[J. Math. Phys. 5, 1609 (1964)]
(Received 8 February 1965)

The theorem on p. 1611 is formulated incorrectly and should therefore be omitted. Simultaneously,
the discussions concerning the inequality signs in Eqgs. (12) and (14), following these equations, should
be omitted. This erratum has kindly been pointed out to the author by Dr. H. Araki, Kyoto University,
Japan, in & private communication.

Errata: Application of Operational Methods to The Analysis of Uniform Plasmas

SavuL SiLven
Lockheed Missiles and Space Company, Palo Alto, California
[J. Math. Phys. 5, 557 (1964)]
(Received 4 January 1965)

N Eq. (12) on p. 558 and Egs. (33), (34), and (12) on p. 560, the symbols i, and i, should be interchanged.

In Eq. (19) on p. 559 the factor (» & a) should be (—» =& @). In Eq. (28) on p. 559, the quantity

(3(w? + 40]) = w.] should be #[(w} + 4w}) &= w.]. In the last sentence of the first paragraph on p. 560, the
symbol 7 should be i.
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